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No way to live with ghosts and no way to live without ghosts. 

Ilya’s Shapiro
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Questions related to entropy and thermodynamics 

Is it possible to screen gravity?

Is it possible to screen the Cosmological Constant or the energy of quantum 

vacuum? 

Interesting exotic compact objects like wormholes

Can gravitons be massive? (Boulware–Deser ghost, 1972, dRGT etc.)
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Lagrange Stability 

the motion is finite - 

is bounded in phase space -

“Global Stability”

Aleksandr Mikhailovich Lyapunov

Lyapunov Stability 

solutions starting  
"close enough" 

(within a distance   from each other) 

remain "close enough" forever 

(within a distance   from it).

δ

ϵ
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propagator 

=
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For Lagrangian    depending on  acceleration L (q, ·q, ··q) a = ··q

H = P1

·
Q1 + P2

·
Q2 − L

P1 =
∂L

∂ ·q
−

d

dt

∂L

∂··q

canonical momentum for Q1 = q

P2 =
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∂··q

canonical momentum for Q2 = ·q

H = P1Q2 + P2a (P2, Q1, Q2) − L (Q1, Q2, a (P2, Q1, Q2))
Hamiltonian linear in   - unbounded from above and from below! P1
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Instability

Etot = EN + EG ghosty matter
normal matter

TIME interaction!
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Our Stable PRL Model

H =
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2
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(p2

y + y2) + VI (x, y)

Normal Oscillator Interaction Potential

VI (x, y) =
λ

1 + 2 (y2 + x2) + (y2 − x2)
2

Coupling Constant

Hamiltonian

Ghosty Oscillator

0 < VI (x, y) λ−1 ≤ 1Interaction is bounded
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y = iỹ , and py = − ip̃y

[y, py] = [ỹ, p̃y] = 1
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 at the origin ℰ(0) = 0

 for > 0 |λ | < 1/2

 is a Lyapunov function  
 so that the system is stable at the origin for  
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Realisation through Higher Derivatives



L(q, ··q) = (··q + q) (2p2 + (2p2)
−1)

where  is the solution of p2 ≡ p2 (q, ··q)

(··q + q) 2q2 + 1 = − 2λp2(2p2
2

+ 1)−3/2

In this way p2 = ∂L/∂··q

Realisation through Higher Derivatives
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HLV =
p2

x
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−
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+ VLV(x, y)

VLV =
f(u) − g(v)

u2 + v2

u2 =
1

2 (r2 − c + (r2 − c)2 + 4 c x2)

v2 = −
1

2 (r2 − c − (r2 − c)2 + 4 c x2)
r2 = x2 − y2

Condition for stability: 

 

 and  are 

bounded from below 

 

with  and 

c > 0

f(u) g(v)

f(u) ⩾ F0 |u |
ζ

> 0

g(v) ⩾ G0 |v |
η

> 0

ζ > 2 η > 2
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Minimum of potential energy is stable

U
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Interaction with ghost creates  

new Lyapunov stable vacua! 
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ω2
x = 1 , ω2

y = 1 , *4 = 1 , c = 1



ω2
x = 5 , ω2

y = − 5 , *4 = 1 , c = 1

ω2
x = 1 , ω2

y = 1 , *4 = 1 , c = 1



Kolmogorov–Arnold–Moser (KAM) theorem 

Small structural changes  
do not jeopardise  

the stability and finiteness  
of motion



Why have not we seen  

such systems in nature yet?



T㔴anks a lot for at㜴ention! 

⾮常感谢您的关注！


