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Take away message-1
Always question assumptions and pay attention to small 

And simple things. 

This talk is about 


wonderland created by


gravity and 


quantum mechanics



Fundamental questions on fundamental interactions 

• Out of all fundamental forces of nature gravity is the weakest force 


• The standard model of particle physics is built on understanding discrete 

symmetries or asymmetries. Parity, Time reversal and Charge conjugation. 


• In building standard model of particle physics, the discrete symmetry played an 

important role. 

Wu experiment: “The parity violation in 

beta decay played an important role in 

building SM of particle physics” 


Pauli rejected outcome of the 

experiment. 


Abdus Salam placed it on par with 

Michelson-Morley experiment. 



Hidden features in the Planck CMB: 

Parity Asymmetry

The angular TT power spectrum is

E. Gaztanaga, K. Sravan Kumar, JCAP 06 (2024) 001 

𝒯( ̂n) = S( ̂n) + A( ̂n)

𝒯 ( ̂n) ≡
ΔT ( ̂n)

T0

= ∑ aℓmYℓm ( ̂n)

aℓm = ∫ dΩ Y*
ℓm ( ̂n) 𝒯 ( ̂n)

S( ̂n) ≡
1

2
[𝒯( ̂n) + 𝒯(− ̂n)] = S(− ̂n)

A( ̂n) ≡
1

2
[𝒯( ̂n) − 𝒯(− ̂n)] = − A(− ̂n)

Cℓ =
1

2ℓ + 1 ∑
m

|aℓm |
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Wonderland of gravity and 

and quantum mechanics 



S( ̂n) ≡
1

2
[𝒯( ̂n) + 𝒯(− ̂n)] = S(− ̂n) A( ̂n) ≡

1

2
[𝒯( ̂n) − 𝒯(− ̂n)] = − A(− ̂n)



The parity asymmetry and the quantum fluctuations 

𝒯 ( ̂n) = 𝒯̃ ( ̂n) + Δ𝒯 ( ̂n)

Δ𝒯 ( ̂n) = − Δ𝒯 (− ̂n)



From COBE to WMAP to Planck (1989-2019)

Observe large scales



Notice the oscillations in Cℓ

Planck data A&A 641, A10 (2020)



The near scale invariant 

power spectrum

But its only good for 

 or ℓ ≳ 200 θ < 1∘

CMB is consistent with inflation? 


Yes, because 


No, because its SI power spectrum is 


Not good with 

ns = 0.964 ≈ 1

 or θ > 7∘ ℓ ≲ 30

Its okay nothing to worry 

Its all cosmic variance, 

don’t do that please

Cℓ =
2

9π ∫
dk

k
𝒫ζ (k) j2

ℓ (k/ks)

𝒫ζ = As (
k

k*
)

ns−1

CMB angular power spectrum

ΔCℓ =
Cℓ

(2ℓ + 1)fsky



We measure correlations in configuration space: there is an issue at 180 degrees

Direct-sum inflation



Direct-sum inflation (DSI)

w ( ̂θ) = ⟨𝒯 ( ̂n1) 𝒯 ( ̂n2)⟩



DSI predictions

Codd
ℓ

=
2

9π ∫
kc

0

dk

k
j2
ℓ ( k

ks ) 𝒫ζ(k)(1 + Δ𝒫v)

Ceven
ℓ

=
2

9π ∫
kc

0

dk

k
j2
ℓ ( k

ks ) 𝒫ζ(k)(1 − Δ𝒫v)

Δ𝒫v = (1 − ns) Re
2

H(1)
3/2 ( k

k*
)

∂H(1)
νs ( k

k*
)

∂νs
νs=

3
2

ns ≈ 0.964 at k* = 0.05 Mpc−1 kc = 0.02k* Coarse graining scale ks = 7 × 10−5 Mpc−1



DSI and CMB data

See our paper 


arXiv:2401.08288


for more details 
especially


For discussion on 
Stochastic inflation and 
non-Markovian nature of 
inflationary fluctuations.

𝒫ζ =
k3

2π2

1

2a2ϵ
classical

𝒫v

τ=∓ 1
a*H*

≈
H2

*

8πϵ*
(

k

k*
)

ns−1
1

2 [2 + Θ(τ)Θ(x)Δ𝒫v (
k

k*
) − Θ(−τ)Θ(−x)Δ𝒫v (

k

k*
)]



Direct-sum inflation vs Standard inflation

RTT =
D+(ℓmax)

D−(ℓmax)
=

∑
ℓmax

ℓ=even
ℓ(ℓ + 1)Cℓ

∑
ℓmax

ℓ=odd
ℓ(ℓ + 1)Cℓ

w(180∘) = < Z > = < 𝒯( ̂n)𝒯(− ̂n) >

Z1 ≡ < Z(n̄) > =

12N2
side

∑
i=1

P(Zi)Zi

Z3 ≡ < Z3 > =

12N2
side

∑
i=1

P(Zi)(Zi − < Z > )3

=

ℓmax

∑
ℓ

2ℓ + 1

4π [Cℓ=even − Cℓ=odd]



Testing models with data and vice versa: Standard Inflation versus      

Direct-sum Inflation

DSI is 650 times more favourable than the standard inflation:  

A compelling evidence for DQFT in curved spacetime

RTT ≈ 0.79



The physics of direct-sum inflation

Our direct-sum inflation 

(DSI) is a framework in 

which a quantum 

fluctuation evolves 

forward and backward in 

time at parity conjugate 

points.  

Inflation violates time 

reversal symmetry which 

implies P-violation in the 

framework of DSI.   



Compelling proof of parity asymmetry and DSI



There are no other anomalies:  

Ruling out hemispherical power 

asymmetry and axis of evil

These anomalies which 

are not real resulted in 

theory speculations in 

100s of papers.



The physics of direct-sum inflation

Our direct-sum inflation 

(DSI) is a frameworks in 

which a quantum 

fluctuation evolves 

forward and backward in 

time at parity conjugate 

points.  

Inflation violates time 

reversal symmetry which 

implies P-violation in the 

framework of DSI.   



Parity Asymmetry in Primordial Gravitational Wave Spectra 

̂uij =
1

2
̂u+
ij

(τ, x) ⊕
1

2
̂u−
ij (−τ, − x) =

1

2 (
̂u+
ij (τ, x) 0

0 ̂u−
ij (τ, x))

T(k) =
𝒫h+ (k, x̂) − 𝒫h− (k, − x̂)

4𝒫h

V(ϕ) = V0 (1 − e
− 2

3α
ϕ)

2

arXiv: 2209.03928v4 KSK, J. Marto



Einstein-Rosen’s conjecture (1935) to solve the problems of GR+QM

A particle in the physical world should be mathematically described by a 

bridge between two sheets of spacetime.  



Origin of ER conjecture 

A particle in the physical world should be mathematically described by a 

bridge between two sheets of spacetime.  

• ER focussed on understanding quantum fields at 


• There are two realizations to represent


          


 


r > 2GM

r > 2GM ⟹ {U < 0, V > 0

U > 0, V < 0

UV = (1 −
r

2GM ) er/2GM, U = ± κe−κu, V = ∓ κe−κu

ds2 =
2GM

r
e1− r

2GM dUdV + r2dΩ2, X =
V − U

2
, T =

U + V

2

ER ignored angular coordinates (θ, φ)

T → − T ⟹ U → − U, V → − V



Two time realizations for one physical Universe

Let us take De sitter Universe R = 12H2 The PT symmetry

Doing QFT with  is the origin of unitarity 

problem

τ < 0

ds2 = − dt2 + e2Htdx2, a = eHt

ds2 =
1

H2τ2 (−dτ2 + dx2), H =
1

a

da

dt

τ → − τ ⟹ {t → − t, H → − H, x → − x}

Expanding Universe ⟹ {H > 0 ; t : − ∞ → ∞

H < 0 ; t : ∞ → − ∞

K. Sravan Kumar, J. Marto, arXiv: 2305.06046 [hep-th]



The fundamental question of unitarity in curved space-time

In standard QFT in curved spacetime unitarity is lost because pure states 

evolve into mixed states. This is because part of a pure state can 

disappear beyond the horizon then we end up with mixed states within the 

horizon.

1956



Anti-unitariy nature of time and definition of positive energy

Space and time are not on equal footing in quantum theory

Time is parameter and position is an operator: Wigner (1926)

i
∂ |Ψ⟩

∂tp
= ℍ̂ |Ψ⟩ = E |Ψ⟩ ⟹ |Ψ⟩ = e−iEtp |Ψ0⟩, tp : − ∞ → ∞

−i
∂ |Ψ⟩

∂tp
= ℍ̂ |Ψ⟩ = E |Ψ⟩ ⟹ |Ψ⟩ = eiEtp |Ψ0⟩, tp : ∞ → − ∞

J. Donogue, G. Menezes (2019), ‘tHooft (2018)



A quantum state in the physical world should be mathematically 

described by a bridge between two sheets of spacetime (ER 1935)

• We devide the physical space (spatial) into two parity conjugate regions 


• A state is direct-sum of two components 

 in the pair of parity conjugate 

regions corresponding to two superselection sector Hilbert spaces 

 


• A positive energy state in  is defined according to arrow of time 

where as a positive energy state in  is defined according to arrow of time 

|Ψ⟩ =
1

2
( |Ψ+⟩ ⊕ |Ψ−⟩) =

1

2 (
|Ψ+⟩

|Ψ−⟩)
ℋ = ℋ+ ⊕ ℋ−

ℋ+ t : − ∞ → ∞
ℋ−

t : ∞ → − ∞

The direct-sum is the mathematical bridge

E. Gaztanaga, K. Sravan Kumar, J. Marto, arXiv: 2408. XXXX (Upcoming paper)



Quantum Harmonic Oscillator & Schrödinger Equation 

i
∂

∂t
|Ψ⟩ = Ĥ |Ψ⟩

Where  is Hamiltonian  Ĥ [Ĥ, 𝒫𝒯] = 0

Ĥ =
̂p2

2m
+

1

2
k2 ̂x2, ̂p = − i

∂

∂x
, [ ̂x, ̂p] = i (ℏ = 1)

PT symmetry of Schrodinger Equation 

 𝒫 : x → − x, 𝒯 : t → − t ⟹

Time reversal is anti-unitary operation, Wigner (1926) 

PT should preserve  invariant

  

̂p

⟹ 𝒫𝒯 ̂p = − i
∂

∂x
(x → − x, i → − i)

i
∂

∂t
|Ψ⟩ = Ĥ |Ψ⟩ → − i

∂

∂t
|Ψ⟩ = Ĥ |Ψ⟩



Positive Energy State Definition in QM

i
∂

∂t
|Ψ⟩ = Ĥ |Ψ⟩ ⟹ |Ψ⟩t = e−iĤt |Ψ⟩0

i
∂

∂t̄
|Ψ⟩ = Ĥ |Ψ⟩ ⟹ |Ψ⟩t = e−iĤt̄ |Ψ⟩0

Since , if the first line is positive energy state with arrow of time 

, the second line is positive energy state with arrow of time

  ARROW OF TIME IS DIFFERENT !!!!!!!  J. Donoghue, G. Menezes, JHEP 11 (2021) 010, 

Phys.Rev.Lett. 123 (2019) 17, 171601 

t̄ = − t

t : − ∞ → ∞
t : ∞ → − ∞

Irrespective of our labeling of position and time (Especially time which is special in 

quantum theory because we time is not an operator, it is a parameter)



QFT in Minkowski spacetime: 

Quantum Mechanics+Special Relativity 

̂ϕ (x) = ∫
d3k

(2π)3/2

1

2 |k0 | [ ̂akeik⋅x + ̂a†

k
e−ik⋅x]

We decompose field operator following definition of positive energy state 

fixing the arrow of time t : − ∞ → ∞

k ⋅ x = − k0t + k ⋅ x

[ ̂ϕ(x), ̂ϕ(y)] = 0, (x − y)2 > 0

The field operators commute for space-like distances (causality condition)

If we instead fix our arrow of time , we decompose field 

operator following way

t : ∞ → − ∞

̂ϕ (x) = ∫
d3k

(2π)3/2

1

2 |k0 | [ ̂ake−ik⋅x + ̂a†

k
eik⋅x]



Superselection rules 

Direct-sum split of Hilbert space is a way out 

Mirror

Direct-sum Schrodinger 

equation is a PT 

symmetric formulation of 

quantum mechanics

According to this a single-

quantum state is expressed 

as a direct-sum of a 

component evolving forward 

in time at position x and 

another component evolving 

backward in time at position 

-x

|Ψ⟩ =
1

2
( |Ψ+⟩ ⊕ |Ψ−⟩) =

1

2 (
|Ψ+⟩

|Ψ−⟩)

i
∂ |Ψ⟩

∂tp
= (Ĥ+ 0

0 −Ĥ−
) |Ψ⟩

One can define positive energy without referencing to the arrow of time.

Wigner, Wightman, Wick Phys. Rev. 88, 101-105, 1952

Quantum Harmonic Oscillator 



Direct-Sum QM (PT symmetric QM)

∫
∞

−∞

⟨Ψ |Ψ⟩dx =
1

2 ∫
∞

−∞
[⟨Ψ+ |Ψ+⟩ + ⟨Ψ− |Ψ−⟩]dx = 1

1

2 (
|Ψ+⟩

|Ψ−⟩)|Ψ⟩ =
1

2
( |Ψ+⟩ ⊕ |Ψ−⟩) =

i
∂ |Ψ⟩

∂tp
= (Ĥ+ 0

0 −Ĥ−
) |Ψ⟩

Ψ(x, tp) = ⟨x |Ψ⟩ =
1

2
(⟨x+ |Ψ+⟩ + ⟨x− |Ψ−⟩) =

1

2 (Ψ0
+(x+)e−iĤtp + Ψ0

−(x−)eiĤtp),

Wave function is

A quantum state is direct-sum of two positive energy components 

evolving forward  and back ward  in time at 

parity conjugate points. 

t : − ∞ → ∞ t : ∞ → − ∞

𝒫𝒯Ψ(x, tp) = Ψ(x, tp) Wave function is PT symmetric

̂p+ = − i
d

dx+

̂p− = i
d

dx−
̂x = ̂x+ ⊕ ̂x−

̂p = ̂p+ ⊕ ̂p−

x+ = x > 0, x− = − x < 0

Ĥ = Ĥ+(p+, x+) ⊕ Ĥ−(p−, x−)

E. Gaztanaga, K. Sravan Kumar, JCAP 06 (2024) 001 K. Sravan Kumar, J. Marto, arXiv: 2305.06046 [hep-th]



Direct-sum Hilbert spaces, Direct-sum rules

 are the state vectors in direct-sum Hilbert space |Ψ+⟩, |Ψ−⟩ ℋ = ℋ+ ⊕ ℋ−

These two Hilbert spaces are super-selection-sectors corresponding to 


Parity conjugate regions of position space spanned by coordinates (x+, x−)

Position and momentum operators in these two Hilbert spaces commute


[ ̂x+, ̂x−] = 0, [ ̂p+, ̂p−] = 0

Ĥ |Ψ±⟩ = (Ĥ+(p+, x+) ⊕ Ĥ−(p−, x−)) |Ψ±⟩ = Ĥ± |Ψ±⟩

Operators only act on the states of corresponding Hilbert space

E. Gaztanaga, K. Sravan Kumar, JCAP 06 (2024) 001 K. Sravan Kumar, J. Marto, arXiv: 2307.10345 [hep-th]

K. Sravan Kumar, J. Marto, arXiv: 2405.20995 [gr-qc]



Direct-sum quantum harmonic oscillator

[ ̂x+, ̂p+] = i, [ ̂x−, ̂p−] = − i, [ ̂x, ̂p] = ( i 0

0 −i)
[a, a†] = [b, b†] = 1, [a, b†] = [a, b] = 0

̂x+ =
1

2
(a + a†), ̂p+ = − i

d

dx+

=
i

2
(a† − a)

̂x− =
1

2
(b + b†), ̂p− = i

d

dx−

= −
i

2
(b† − b)

Ĥ = ( ̂p2

2m
+

1

2
k2 ̂x2) = (

̂p2
+

2m
+

1

2
k2 ̂x2

+) ⊕ ( ̂p2
−

2m
+

1

2
k2 ̂x2

−) = Ĥ+ ⊕ Ĥ−

̂x = ̂x+ ⊕ ̂x−

̂p = ̂p+ ⊕ ̂p−



PT symmetric wavefunction of direct-sum harmonic oscillator 

Ψ (x, tp) =
1

2
Ψ+ (tp, x+) +

1

2
Ψ− (−tp, x−)

=
1

2n+1n! (
1

π )
1/4

e−x2
+Hn (x+) e−iEntp +

1

2n+1n! (
1

π )
1/4

e−x2
−Hn (x−) eiEntp

 are Hermitian polynomialsHn

Direct-sum QM is a PT symmetric QM with Hermitian operators 



Direct-sum quantum field theory (DQFT)

̂ϕ (x) =
1

2

̂ϕ+ (tm, x) ⊕
1

2

̂ϕ− (−tm, − x)

=
1

2 (
̂ϕ+ 0

0 ̂ϕ−
)

We take forward the construction to Minkowski spacetime

ds2 = − dt2
m + dx2

We write the single quantum state as direct-sum of two 

components which describe the same field at parity conjugate 

points in physical space

̂ϕ± (x) = ∫
d3k

(2π)3/2

1

2 |k0 | [ ̂a
(±) ke±ik⋅x + ̂a†

(±) k
e∓ik⋅x]Causality

[ ̂ϕ+, ̂ϕ−] = 0

Vacuum |0⟩ = |0+⟩ ⊕ |0−⟩ = (
|0−⟩

|0+⟩)

We showed that this construction 

does not change any results of 

standard quantum theory 

because spacetime is PT 

symmtric: 

k ⋅ x = − k0t + k ⋅ x

[ ̂ϕ(x), ̂ϕ(y)] = 0, (x − y)2 > 0



Special Relativity+ Quantum Mechanics: Field operators commute for spacelike 

distances [ ̂ϕ (x), ̂ϕ (y)] = 0, (x − y)
2

> 0

In a nutshell:

A quantum field in DQFT has two direct-sum components with opposite time 

evolutions at parity conjugate regions satisfying an additional new causality condition 

[ ̂ϕ+ (x), ̂ϕ− (−x)] = 0



No observational implications for QFT in Minkowski spacetime 

ℒint = −
λ

3

̂ϕ3 = −
λ

3 (
̂ϕ3
+ 0

0 ̂ϕ3
−
)

⟨0+ | ̂ϕ+ (x) ̂ϕ+ (x′￼) |0+⟩ = ⟨0− | ̂ϕ− (x) ̂ϕ− (x′￼) |0−⟩

𝒜 =
𝒜N→M

+ (pa, − pb) + 𝒜N→M
− (−pa, pb)

2

 𝒜N→M
+ = 𝒜N→M

− = 𝒜 Due to the (C)PT symmetry 



δ(2)Ss =
1

2 ∫ dτd3xa2

·
ϕ2

H2 [ζ′￼2 − (∂ζ)
2]

The second order action for curvature perturbation 

The Mukhanov-Sasaki variable (a classical field redefinition)

v =
a

·
ϕ

H
ζ

The quantum MS variable
1

2 (
̂v(+) (τ, x) 0

0 ̂v− (−τ, − x)), |0⟩qdS = (
|0⟩qdSI

|0⟩qdSII
)

PT symmetry breaking (quantum mechanically: τ → − τ ⟹ (t, H, ϵ, η) → (−t, − H, − ϵ − η)

DSI calculations

qdS⟨0 | ̂v (τ, x) ̂v (τ, y) |0⟩qdS =

=
1

2 ∫
dk

k

k3

2π2 ( |v+ k |
2 + |v− k |

2 )
sin kL

kL

1

2
qdSI

⟨0 | ̂v+ (τ, x) ̂v(+) (τ, y) |0⟩qdSI
+

1

2
qdSII

⟨0 | ̂v− (−τ, − x) ̂v− (−τ, − y) |0⟩qdSII



𝒫ϕ̃ (k, τ0) = ∫
d3x

(2π)3/2
e−ik⋅xG(x, τ0), x = |x1 − x2 |

Power Spectrum

G(x, τ0) = ⟨0 | ϕ̃(x1, τ0)ϕ̃(x2, τ0) |0⟩, |0⟩ = (
|0+⟩

|0−⟩),

̂̃ϕ+ 0

0 ̂̃ϕ−

G(x, τ0) = Θ(τ0)θ(x)G+(x, τ0) + Θ(−τ0)θ(−x)G−(x, τ0)

𝒫ϕ̃ (k, τ0) = Θ(τ0)θ(x)𝒫ϕ̃+
+ Θ(−τ0)θ(−x)𝒫ϕ̃−

𝒫ζ =
k3

2π2

1

2a2ϵ
classical

𝒫v

τ=∓ 1
a*H*

≈
H2

*

8πϵ*
(

k

k*
)

ns−1
1

2 [2 + Θ(τ)Θ(x)Δ𝒫v (
k

k*
) − Θ(−τ)Θ(−x)Δ𝒫v (

k

k*
)]



DQFT brings back the unitarity that is lost 

DQFT is a solution to information paradox

|ϕ⟩ =
1

2 (
|ϕI⟩

|ϕII⟩)

Horizon is a Mirror



Pure states evolve into Pure states: Unitarity 

t

z
L R

F

P

ℋ𝒜 = ℋL ⊕ ℋR

|ψLR⟩ =
1

2 (
|ψR⟩

|ψL⟩)

ρ =
1

2
ρL ⊕

1

2
ρR =

1

2
ρ2

L ⊕
1

2
ρ2

R = ρ2

Both left and right Rindler observer’s QFT is unitary

Since left region is PT conjugate of Right, observers can reconstruct physics beyond 

the horizon. 

|ψ12⟩ = ∑
mn

cmn |ϕ1⟩ ⊗ |ϕ2⟩ cmn ≠ cmcn

|ϕ1⟩ = ∑
m

cm |ϕm1⟩, |ϕ2⟩ = ∑
n

cn |ϕn2⟩

Horizon is a Mirror

Rindler spacetime



Pure states evolve into Pure states: Unitarity in curved spacetime (Horizon is a 

Mirror) 

K. Sravan Kumar, J. Marto, arXiv: 2307.10345 [hep-th]K. Sravan Kumar, J. Marto, arXiv: 2405.20995 [gr-qc]

(θ, φ)
(π − θ, π + φ)



Quantum gravity at the black hole horizon

[Φ̂Iext, Φ̂Iint] = iℏ
8πG

r2
S (ℓ2 + ℓ + 1)

, [Φ̂IIext, Φ̂IIint] = iℏ
8πG

r2
S (ℓ2 + ℓ + 1)

, (c = 1)

The interior and exterior quantum field components correspond to direct-sum Fock space ℱ = ℱI ⊕ ℱII

Derived from GR+QM 

G ‘tHooft, Universe 2021, 7(8), 298 K. Sravan Kumar, J. Marto, arXiv: 2307.10345 [hep-th]

(θ, φ)
(π − θ, π + φ)



Conclusions (Take away message-2)

• Quantum Field Theory in Curved Spacetime is need of the hour for both 

theory and observations. 


• Without a consistent QFT in curved spacetime, one cannot achieve full 

quantum gravity. 


• Gravitational Horizons are most important in our understanding of 

Universe. (i) In the context of dark energy: Black Hole Universe proposal 
E. Gaztanaga Symmetry 14 (2022) 9, 1849, Mon.Not.Roy.Astron.Soc. 521 (2023) 1, L59-L63  (ii) In the 

context of understanding dark matter: Matter horizons proposed by G. W. 

R Ellis and S. W. Stoeger Mon.Not.Roy.Astron.Soc. 398 (2009) 1527-1536

An important message: Observational people should know 

the theoretical principles and theory people should 

understand observational analysis and principles for a 

coherent progress in physics. 



Thank you very much 

QGRAV 2021


