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Introduction



Introduction-1-: A brief sketch of the universe

� The universe is homogeneous and isotropic on large scales

(cosmological principle)

� The matter content of the universe:

� Standard matter

� Dark matter

� Something that induce the late-time acceleration of the

Universe

� The acceleration of the universe is backed by several

measurments: H(z), SneIa, GRB, BAO, CMB, LSS (matter

power spectrum, growth function)...
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Introduction-2-

� The effective equation of state of whatever is driving the current

speed up of the universe is roughly -1 (Please see Saridakis talk)..

� Such an acceleration could be due

� A new component of the energy budget of the universe: dark energy;

i.e. it could be Λ, quintessence or of a phantom(-like/effective)

nature

� A change on the behaviour of gravity on the largest scale. No new

component on the budget of the universe but rather simply GR

modifies its behaviour, within a metric, Palatini (affine metric) ....
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Late-time acceleration of the Universe within

GR: dark energy with a constant EoS



Constant equation of state for DE: background-1-

� Cosmic acceleration:

ä

a
= −4πG

3
(ρm + ρde + 3pde)

� Observation indicates that for wde ∼ −1 where wde = pde/ρde.

� Therefore, as soon as DE starts dominating the Universe starts

accelerating, i.e. ä > 0.

� Simplest cases ΛCDM or wCDM.
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Constant equation of state for DE: background-2-

� State finders approach (Sahni, Saini

and Starobinsky JETP Lett. [arXiv:astro-ph/0201498])

� Scale factor: a(t)
a0

=

1 +
∞∑
n=1

An(t0)
n!

[H0 (t − t0)]
n,

where An := a(n)/(aHn),

n ∈ N.
� State finders parameters:

S
(1)
3 = A3,

S
(1)
4 = A4 + 3 (1− A2),

S
(1)
5 = A5 −

2 (4− 3A2) (1− A2)

� Ωm = 0.309, Ωd = 0.691 and

H0 = 67.74 km s−1 Mpc−1

(according to Planck).
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Albarran, B.L. and Morais, EPJC 2018 [arXiv:1706.01484]
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Constant equation of state for DE: perturbations-1-
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� Example of the evolution of the
perturbations: k = 10−3 Mpc−1

� ΛCDM model: Φk vanishes
asymptotically

� Phantom model: Φk also evolves
towards a constant in the far future
but a change of sign occurs roughly
at log10 a/a0 ≃ 2.33, corresponding
to 8.84× 1010 years in the future.
A dashed line indicates negative
values of Φk

� Quintessence model: Φk evolves
towards a constant in the far future
without changing sign

Albarran, B.L. and Morais, EPJC 2018 [arXiv:1706.01484]
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Constant equation of state for DE: perturbations-2-

� What about f σ8 for the three different DE models?

f ≡ d (ln δm)

d (ln a)
, σ8 (z , kσ8) = σ8 (0, kσ8)

δm (z , kσ8)

δm (0, kσ8)

kσ8
= 0.125 hMpc−1, σ8(0, kσ8

) = 0.820 (Planck)

Albarran, B.L. and Morais [arXiv:1706.01484]
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Late-time acceleration of the Universe within

GR and with a phantom fluid



Late-time acceleration of the Universe within

GR and with a phantom fluid

The models



The models

� We are going to focus on the genuinely phantom matter. i.e. when

the Equation of State satisfies w < −1. (not only not excluded but

even favoured observationally)

� The phantom matter violates the Null energy condition. In

consequence, the rest of the energy conditions are violated.

� Null energy condition ⇒ p + ρ ⩾ 0.

� Weak energy condition ⇒p + ρ ⩾ 0 , ρ ⩾ 0.

� Dominant energy condition ⇒ ρ ⩾ |p|.
� Strong energy condition ⇒ p + ρ ⩾ 0 , 3p + ρ ⩾ 0.

� For example, a suitable way to write the Equation of State of a

phantom fluid is

p = −ρ− Cρα,

where C is a positive constant and α is a real number. We are going

to focus on the cases α = 1, 1/2, 0.
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Genuine phantom models: BR, LR and LSBR

� The DE content can be described for example with a perfect fluid or

a scalar field

Event EoS for a perfect fluid Potential for a scalar field

BR pd = wdρd V (ϕ) = Cbre
λϕ

LR pd = −ρ− B
√
ρd V (ϕ) = Clrϕ

4 + Dlrϕ
2

LSBR pd = −ρd − A/3 V (ϕ) = Clsϕ
2 + Dls

Where wd < −1, the parameters A and B are positive and Cbr , Clr , Dlr ,

Cls and Dlr are constants.

� The lower is the power on ϕ of V (ϕ), the smoother is the abrupt

event.
(1) A.A. Starobinsky. astro-ph 9912054; R.R. Cadwell astro-ph 9908168; Cadwell et al. astro-ph/0301273

(2) H. S̆tefanc̆ić. astro-ph 0411630; S. Nojiri, S. Odintsov and S. Tsujikawa hep-th/0501025; M. Bouhmadi-López

arXiv:astro-ph/0512124.

(3) M. P. Da̧browski, C. Kiefer and B. Sandhöfer. hep-th/0605229

(4) M. Bouhmadi-López , A. Errahmani, P. Mart́ın-Moruno, T. Ouali and Y. Tavakoli. arXiv:1407.2446

Recent Review −→ de Haro, Nojiri, Odintsov, Oikonomou and Pan arXiv:

2309.07465 (Phys. Rept)
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Phantom energy: Should we be afraid?

� Evolution of the scale factor for different models vs cosmic time.
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Late-time singularities

Some of the cosmological parameters:

DE might induce a future cosmic singularity

𝑡 Cosmic time
𝑎 Scale factor (relative size)
𝐻 Hubble parameter (growth rate)
 𝐻 Time derivative of 𝐻

Singularity 𝒕 𝒂 𝑯  𝑯  𝑯,  𝑯…

Big Bang 0 0 ∞ ∞ ∞

De Sitter ∞ ∞ 𝐻𝑑𝑠 0 0

Big Rip 𝑡𝑠 ∞ ∞ ∞ ∞

LR ∞ ∞ ∞ ∞ ∞

LSBR ∞ ∞ ∞  𝐻𝑠 0

Big Freeze 𝑡𝑠 𝑎𝑠 ∞ ∞ ∞

Sudden. S. 𝑡𝑠 𝑎𝑠 𝐻𝑠 ∞ ∞

Type IV 𝑡𝑠 𝑎𝑠 𝐻𝑠  𝐻𝑠 ∞

Asymptotic evolution of the scale factor

(Λ𝐶𝐷𝑀)

Bouhmadi-López, Kiefer, Mart́ın-Moruno, arXiv:1904.01836 [gr-qc] (review published in GRG)

Borislavov Vasilev, Bouhmadi-López, Mart́ın-Moruno, arxiv: arXiv:2106.12050 (review published in Universe) 11



Late-time acceleration of the Universe within

GR and with a phantom fluid

Observational data and constraints



Observational data

� The Pantheon compilation: 1048 SNeIa dataset 0.01 < z < 2.26

� The power spectrum of CMB affects crucially the physics, from the

decoupling epoch till today. Effects are mainly quantified by the

acoustic scale la and the shift parameter R Komatsu et 2008

� The BAO peaks present in the matter power spectrum can be used

to determine the Hubble parameter H(z) and the angular diameter

distance DA(z)

� H(z) data
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Model fitted

� BR model: pd = wdρd

E (a)2 = Ωra
−4 +Ωma

−3 +Ωda
−3(1+wd).

� LR model: pd = −
(
ρd + βρ

1
2

d

)
E 2(a) = Ωra

−4 +Ωma
−3 +Ωd

(
1 +

3

2

√
Ωlr

Ωd
ln(a)

)2

.

� LSBR model: pd = −
(
ρd + α

3

)
E 2(a) = Ωra

−4 +Ωma
−3 +Ωd

(
1− Ωlsbr

Ωd
ln(a)

)
.
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BR Model
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LR Model
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LSBR Model
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Comparison with LCDM

Akaike information criterion (AIC)
17



Late-time acceleration of the Universe within

GR and with a phantom fluid

A perturbative approach: GR and phantom fluids



Our approach

� We start considering that the late-time acceleration of the universe

is described by a dark energy component effectively encapsulated

within a perfect fluid with energy density ρd and pressure pd . On

this setup, we consider two simple scenario:

� A constant equation of state for DE

� A DE in an effective and genuinely phantom DE universe. The

reason of this second choice will become clear after considering the

first case.

� Of course, on top of this we invoke a dark matter component.

� Given that to get the matter power spectrum, we start our numerical

integration since the radiation dominated epoch, we will consider as

radiation as well on our model.
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Cosmological perturbations: GR and for the late Universe-1

� We worked on the Newtonian gauge and carried the first order

perturbations considering DM, DE and radiation on GR. Radiation

was included because our numerical integrations start from well

inside the radiation dominated epoch (to get the matter power

spectrum)

� We assumed initial adiabatic conditions for the different fractional

energy density perturbations

� The total fractional energy density is fixed by Planck measurments;

i.e. through As and ns
� The speed of sound for DE:

� The pressure perturbation of DE reads:

δpd = c2sdδρd − 3H (1 + wd)
(
c2sd − c2ad

)
ρdvd , where c2sd = δpd

δρd

∣∣∣
r.f .

and c2aA =
p′d
ρ′
d

� Given that c2sd is negative, we can end up with a problem (this is not

intrisic to phantom matter as it can happen for example with fluids

with a negative constant equation of state larger than -1)

� We choose c2sd = 1 as a phenomenological parameter 19



Cosmological perturbations: GR and for the late Universe-2

� Adiabatic conditions:

3

4
δr,ini = δm,ini =

δd,ini
1 + wd,ini

≈ 3

4
δini

vr,ini = vm,ini = vd,ini ≈
δini
4Hini

� Initial conditions for δ are fixed through the amplitude and spectral

index of the primordial inflationary power spectrum:

As = 2.143× 10−9, ns = 0.9681 and k∗ = 0.05 Mpc−1 (Planck

values): Φini =
2π
3

√
2As

(
k
k∗

)ns−1

k−3/2

� Well inside the radiation era: Φini ≈ − 1
2δtot,ini and

Φini ≈ −2Hinivtot,ini

� We choose c2sd = 1 as a phenomenological parameter

� The parameters of the models will be fixed through the fitting we

did previously.

20



Results: DM perturbations and the gravitational potential

|δ m
|k

3 2

Ψ
/
Ψ

⋆

x x

k1 = 3.33× 10−4h Mpc−1, k4 = 1.02× 10−2h Mpc−1,

k2 = 1.04× 10−4h Mpc−1, k5 = 3.19× 10−2h Mpc−1,

k3 = 3.26× 10−3h Mpc−1, k6 = 1.00× 10−1h Mpc−1.
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Results: DE perturbations

|δ d
|k

3 2
|δ d

|
k

3 2

x x x

k1 = 3.33× 10−4h Mpc−1, k4 = 1.02× 10−2h Mpc−1,

k2 = 1.04× 10−4h Mpc−1, k5 = 3.19× 10−2h Mpc−1,

k3 = 3.26× 10−3h Mpc−1, k6 = 1.00× 10−1h Mpc−1.
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Results: a closer look at the gravitational potential

Ψ
/
Ψ

⋆
Ψ
/
Ψ

⋆

x x x

k1 = 3.33× 10−4h Mpc−1, k4 = 1.02× 10−2h Mpc−1,

k2 = 1.04× 10−4h Mpc−1, k5 = 3.19× 10−2h Mpc−1,

k3 = 3.26× 10−3h Mpc−1, k6 = 1.00× 10−1h Mpc−1.
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Results: The evolution of f σ8 (growth rate)-1-

f
σ
8

z
The evolution of f σ8 for the 3 models.

f ≡ d (ln δm)

d (ln a)
, σ8 (z , kσ8) = σ8 (0, kσ8)

δm (z , kσ8)

δm (0, kσ8)

kσ8
= 0.125 hMpc−1, σ8(0, kσ8

) = 0.820 (Planck) 24



Effect of the speed of sound, C 2
sd , on DE perturbations
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Albarran, Bouhmadi-López and Marto, arXiv:2011.08222 [gr-qc.CO]. Published in European Physical Journal C.
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Effect of the speed of sound, C 2
sd , on the gravitational potential-

1-
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Effect of the speed of sound, C 2
sd , on the gravitational potential-
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Late-time acceleration of the Universe within

GR and with a phantom fluid

DE and DM models with interactions



DE and DM models with interaction

♯Motivations

� Solving the coincidence problem.

� Check if an interaction between DE and DM could statistically

improve the previous models.

� Check if the interaction could attenuate or modify the nature of

future cosmological events induced by the former models

corresponding to BR, LR and LSBR.

� Check whether the previous models A, B and C might respond

differently to the interaction, as they exhibited very similar behaviour

both at the background level and at the perturbative level.

{
ρ̇m + 3Hρm = −Q,

ρ̇d + 3H(1 + wd)ρd = Q.

where

Q = λHρd 28



Comparing Models-1-

29



Comparing Models-2-

Notice that All the interacting models will induce a BR!!!

30



Results: The evolution of f σ8 (growth rate)

IBR

ILR

ILSBR

IΛCDM

ΛCDM
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Bouali, Albarran, Bouhmadi-López, Errahmani and Ouali, Phys. of The Dark Universe, arXiv:2103.13432[astro-ph.CO].

We will post the effect of a varying c2s (hopefully) soon arXiv:24XX.XXXXX

� Note: you have as well phantom dark energy models that

approaches a de Sitter Universe asymptotically and give good fitting

(work in collaboration with Fernández-Jambrina, Lazkoz and Salzano, arXiv:2311.10526, Phys.Dark Univ. 45 (2024) 101511)
31



Speeding up with fields



Speeding up with fields

Late-time acceleration through a 3-form field



Can we have something more fundamental to describe DE?

� Can we have something more fundamental to describe phantom DE

models?

� A possibility come in the form of 3-forms.

� Inspired in string theory: Copeland, Lahiri,Wands (1995)

� Massless 3-form as Cosmological Constant (solving CC problem):

Turok, Hawking (1998)

� Inflation or late time acceleration driven by self-interacting 3-forms:

Koivisto, Nunes (2009) and (2010)

� Non-Gaussianity: Kumar, Mulryne, Nunes, Marto, Moniz (2016)

� Quantum cosmology with 3-forms: Bouhmadi-López, Brizuela, Garay

(2018)

� The answer as we will see in a momment is yes:

Phantom DE models (LSBR): Morais, Bouhmadi-López, Kumar, Marto, Tavakoli (2017),Bouhmadi-López, Marto, Morais and

Silva (2018), C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2024)
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p-forms in Cosmology

A p-form is a totally anti-symmetric covariant tensor:

ωµ1...µp = ω[µ!...µp ] .

In D-dimensions, the number of degrees of freedom of a massive p-form is

degrees of freedom =
(D − 1)!

(D − 1− p)!p!
.

In a 4-dimensional space-time:

� p = 0 (scalar field) ⇒ 1 degree of freedom

� p = 1 (vector field) ⇒ 3 degrees of freedom

� p = 2 ⇒ 3 degrees of freedom

� p = 3 ⇒ 1 degree of freedom

⇒ The scalar field and the 3-form are the only ones compatible with a

homogeneous and isotropic universe (in an easy way).
C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)

T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009) 33



The 3-form action

� We will consider the following action for a massive 3-form, Aµνρ,

minimally coupled to gravity

SA =

∫
d4x
√
| det gµν |

[
− 1

48
FµνρσFµνρσ − V (AµνρAµνρ)

]
.

� The strength tensor, a 4-form, is defined through the exterior

derivative: Fµνρσ ≡ 4∇[µAνρσ]

� The equation of motion, obtained from variation of SA, is

∇σF
σ
µνρ − 12

∂ V

∂ (A2)
Aµνρ = 0

� ⇒ a massless 3-form is equivalent to a cosmological constanst

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)

T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)

M. Duff and P. Van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980)
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3-form Cosmology

We consider a homogeneous and isotropic universe described by the

Friedmann-Lemâıtre-Robertson-Walker line element

ds2 = −dt2 + a2(t)γijdx
idx j .

t - cosmic time, ˙{ } = d{ }/dt
a - scale factor

x i - comoving spatial coordinates (roman indices run from 1 to 3).

Only the purely spatial components of the 3-form are dynamical:

A0ij = 0 , Aijk = a3(t)χ(t)ϵijk .

T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)

Koivisto and Nunes PLB [arXiv:0907.3883], idem PRD [arXiv:0908.0920]
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3-form Cosmology: background equations

⇒ Friedmann Equation

3H2 = κ2ρχ = κ2
[
1

2
(χ̇+ 3Hχ)2 + V (χ2)

]
.

⇒ Raychaudhuri equation

Ḣ = −κ
2

2
(ρχ + Pχ) = −κ

2

2
χ
∂V

∂χ
.

A 3-form can show phantom-like behavior if ∂V /∂χ2 < 0.

⇒ Equation of motion

χ̈+ 3Hχ̇+ 3Ḣχ+
∂V

∂χ
= 0 .
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3-form Cosmology: evolution of χ-1-

Combining the Raychaudhuri equation and the equation of motion for χ:

χ̈+ 3Hχ̇+

(
1− χ2

χ2
c

)
∂V

∂χ
= 0 .

The static solutions are:

� the critical points of the potential:
∂V

∂χ
= 0,

� the limiting points: χ = ±χc .

Once inside the interval [−χc , χc ], the field χ evolves towards a local

minimum of V . However. . .
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3-form Cosmology: evolution of χ-2-

• Independently of the shape of a

regular potential, in absence of DM

interaction, the 3-form decays

rapidly towards the interval

[−χc , χc ] Koivisto and Nunes PLB [arXiv:0907.3883], idem

PRD [arXiv:0908.0920]

• In an expanding Universe, once

inside the interval [−χc , χc ], the

3-form will end up in one of the

minima of the potential (notice

Veff ̸= V ).

• If the 3-form stops at the limits of

this interval:

χ = ±χc and χ̇ = 0

• −→ Universe heads towards a

LSBR event (χc =
√
2/3κ2)

-2 -1 0 1 2
0.0

0.5

1.0

1.5

χ/χ�

�
/�
�
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Behaviour of fσ8
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Fitting the model-1-
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Fitting the model-2-
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Comparing the model to LCDM
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Further consideration with 3-forms from a gravitational point

of view

Let me add that 3-forms can be quite interesting for further reasons as:

� They allow naturally for regular BHs (Bouhmadi-López, Chen, Chew, Ong and Yeom, arXiv:

2005.13260 [gr-qc]. Published in EPJC 2021 )

� They naturally support wormholes without changing the sign of the

kinetic energy (Bouhmadi-López, Chen, Chew, Ong and Yeom, arXiv: 2108.07302 [gr-qc]. Published in JCAP

2021).

43



Speeding up with fields

Late-time acceleration of the universe within Kinetic

Gravity Braiding theories



Kinetic gravity Braiding theories

� The gravitational action (Deffayet, Pujolas, Sawiki and Vikman, arXiv: 1008.0048 [hep-th]. Published in

JCAP 2010 ) :

S =

∫
d4x

√−g

[
1

2
R + K (ϕ,X )− G (ϕ,X )□ϕ

]
� Passes constraints from GR170817

� Essential mixing

� (Im)Perfect fluid

� Self-tuning de Sitter solution

� Phantom behaviour without ghost nor gradient instabilities (where

the equation of state of the scalar field < −1)

� We will assume the shift-symmetric case: the action is invariant

under ϕ→ ϕ+ c where c is a constant

� Our goal is to analyse the future evolution of the shift-symmetric

Kinetic Gravity Braiding theories. (Borislavov, Bouhmadi-López, and Mart́ın-Moruno

arXiv:2210.07276, 2212.02547, PLB 2023, JCAP 2023)
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Background dynamics

� Conserved shift current: J = ϕ̇KX + 6XGXH

� Background gravitational equations:

� Friedmann eq: 3H2 = ρm + ρr − K + ϕ̇J

� Raychaudhuri eq: Ḣ = − 1
2

(
ρm + 4

3
ρr
)
+ XGX ϕ̈− 1

2
ϕ̇J

� Conservation equations:

� ρ̇m = −3Hρm

� ρ̇r = −4Hρr

� J̇ = −3HJ, therefore, J = Q0

(
a
a0

)−3

.
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A dynamical system approach: suitable definition of the vari-

ables

� The matter dimensionless variables reads

Ωr :=
ρr
3H2

,

Ωm :=
ρm
3H2

,

Ωϕ :=
ϵ
√
2XJ − K

3H2

� We assume Ωϕ to be positive since we are mainly interested in the
future attractors of expanding FLRW models. Hence, Ωi ∈ [0, 1] for
i ∈ {r ,m, ϕ}.

� We carry out our analysis for expanding solutions; i.e. H positive

H

H0
=

h

1− h2
−→ h ∈ [0, 1]

� Through the above definition we obtain new solutions that were
overlooked previously.

� The Friedmann constraint reads: Ωr +Ωm +Ωϕ = 1
46



A dynamical system approach: evolution of the system

� Evolution:

h′ =
(1− h2)h

1 + h2
C1,

Ω′
r = −2Ωr (2 + C1) ,

Ω′
ϕ = C2 − 2ΩϕC1,

� Auxiliary functions:

C1 :=
H ′

H
, C2 :=

ϵ
√
2X

H2
(HGXX

′ − J)

� Equations of state:

weff :=
Ptot

ρtot
= −1− 2

3
C1, wϕ :=

Pϕ

ρϕ
= −1− 1

3Ωϕ
C2.

� A prime stands for derivative respect to ln(a).
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A dynamical system approach: fixed points

1. Vacuum solutions dominated by matter or the scalar field:

(hfp = Ωfp
r = 0, C fp

1 ̸= −2 and C fp
2 = 2C fp

1 Ωfp
ϕ )

2. Vacuum solutions where radiation like effects dominates the nearby

evolution of the system, i.e. w fp
eff = 1/3. Scaling solutions for the

scalar field. (hfp = 0, C fp
1 = −2 and C fp

2 = −4Ωfp
ϕ ):

3. Cosmological singularities (Ex. BR) (hfp = 1, Ωfp
r = 0, C fp

1 ̸= −2

and C fp
2 = 2C fp

1 Ωfp
ϕ )

4. Initial cosmological singularities. It is a radiation dominated regime

(w fp
eff = 1/3). (hfp = 1, C fp

1 = −2 and C fp
2 = −4Ωfp

ϕ )

5. de Sitter solutions Ex. (hfp ̸= {0, 1}, Ωfp
r = 0 and C fp

1 = C fp
2 = 0):

Teodor Borislavov, Mariam Bouhmadi-López, and Prado Mart́ın-Moruno arXiv:2210.07276, 2212.02547, PLB 2023, JCAP 2023
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Proxy model: K (X ) = 0 and G (X ) = cGX
β
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Proxy model: K (X ) = 0 and G (X ) = cGX
β

50



Proxy model: K (X ) = 0 and G (X ) = cGX
β
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Stability of the system we have analysed at the pertubative

level

1. At zero order (background): the system is stable, i.e. there are

attractor solutions.

2. At first order: (at least for the simplest model we have analysed) a

tachyonic or a ghost issue can arise and they are complementary; i.e.

if we avoid one, the other one shows up. We think the tachyonic one

is more problematic as it can affect the large scale structure. The

other one can be shown to be (potentially) avoided when quantising

gravity and the matter fields.

3. Dark-energy fluctuations features ghost and/or gradient instabilities

for gravitational-wave amplitudes that are produced by typical binary

systems.

P. Creminelli, G. Tambalo, F. Vernizzi and V. Yingcharoenrat, arXiv:1910.14035, JCAP 2020

Teodor Borislavov, Mariam Bouhmadi-López, and Prado Mart́ın-Moruno arXiv:2406.12576
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DE singularities: a quantum approach



On the quantum fate of singularities in a dark-energy dominated

universe

� So far, there is no fully successful quantum gravity theory

that would lead to THE theory of quantum cosmology

� There are, however, several approaches in this direction as we

have heard on this conference. Here we will follow the most

conservative one which corresponds to the Wheeler deWitt

approach.

� The Wheeler DeWitt equation is the equivalent to

Schrödinger like equation
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On the quantum fate of singularities in a dark-energy dominated

universe within GR

Within the framework of quantum geometrodynamics and mainly

within a Born Oppenheimer approximation

� It was shown that the big rip can be removed Dabrowski, Kiefer and

Sandhöfer, PRD, [arXiv:hep-th/0605229], Alonso, B.L. and Mart́ın-Moruno, PRD, [arXiv:1802.03290 [gr-qc]].

� It was shown the avoidance of a big brake singularity Kamenshchik,

Kiefer and Sandhöfer 07’, PRD, [arXiv:0705.1688].

� It was shown also the avoidance of a big démarrage

singularity and a big freeze BL, Kiefer, Sandhöfer and Moniz, PRD, [arXiv:0905.2421]

� Type IV singularity is removed BL, Krämer and Kiefer, PRD, [arXiv:1312.5976].

� It has been shown as well that LR can be removed Albarran, BL,

Kiefer, Marto, Moniz, PRD, [arXiv:1604.08365].
Reviews on the topic by B.L., Kiefer and Mart́ın-Moruno arXiv:1904.01836 (GRG), T. Borislavov, B.L. and Mart́ın-Moruno

arXiv: 2106.12050 (Universe), On DE singularities in general: de Haro, Nojiri, Odintsov, Oikonomou and Pan arXiv:

2309.07465 (Phys. Rept) 54



LSBR driven by a scalar field

� Phantom scalar field ϕ: ρϕ = − 1
2 ϕ̇

2 + V (ϕ) , pϕ = − 1
2 ϕ̇

2 − V (ϕ)

ϕ̈+ 3Hϕ̇−V ′(ϕ) = 0, V (ϕ) = A
6 + 2πAG (ϕ− ϕ1)

2

α = ln(a/a0)
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LSBR: Quantisation with a scalar field

� The Wheeler-DeWitt equation:

ℏ2

2

[
κ2

6

∂2

∂α2
+
∂2

∂ϕ2

]
ψ(α, ϕ) + a60e

6αV (ϕ)ψ(α, ϕ) = 0

� Can be solved within the BO:

� The gravitational part are oscillatory or exponential functions.

� The matter part can be written as parabolic cylinder functions that

decay to zero at large value of the scale factor.

� It can be shown that there are solutions (wave functions) that

vanishe close to the classically abrupt event. Therefore, the DeWitt

condition is fullfilled. This result can be interpreted as an “abrupt

event” avoidance.

Albarran, BL, Cabral, Mart́ın-Moruno, JCAP, [arXiv:1509.07398] (minimally coupled scalar field)
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LSBR: Quantisation with a 3-form-1-

� The classical action for a FLRW universe (spatially flat) reads:

S = SA + SEH =

∫
dt VN

(
−aȧ2

2κN2
+

ϕ̇2

2a3N2
− a3V

)
,

where ϕ = a3χ.

� The classical Hamiltonian for a FLRW universe (spatially flat) reads:

H = N

(
− κ

2a
p2a +

a3

2
p2ϕ + a3V

)
,

where

pa =
δL

δȧ
= − aȧ

κN
, pϕ =

δL

δϕ̇
=

ϕ̇

a3N
.

B.L., Brizuela and Garay, JCAP, [arXiv:1802.05164 [gr-qc]] (3-forms)
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LSBR: Quantisation with a 3-form-2-

� The classical Hamiltonian for a FLRW universe (spatially flat) can

be rewritten as:

H = N

(
1

2
GABpApB + a3V

(
6(a−3ϕ)2

))
,

with A and B indices referring to a or ϕ and the mini-superspace

metric given by

GAB =

(
−κ

a 0

0 a3

)
. GAB =

(
− a

κ 0

0 1
a3

)
.
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LSBR: Quantisation with a 3-form-3-

� With the usual prescription, we transform the classical dynamical

variables into quantum operators by means of the Laplace-Beltrami

operator:

GABpApB → − ℏ2√
−G

∂A(
√
−GGAB∂B) ,

where G is the determinant of GAB .

� The Wheeler-DeWitt equation then reads:

(
ℏ2κ∂2β − ℏ2∂2ϕ + 2V

)
ψ(β, ϕ) = 0,

and β = a3/3 .
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LSBR: Quantisation with a 3-form-4-

� The potential:

V = V0e
−λ2χ2

= V0e
−9λ2ϕ2/β2

,

with λ2 = κ/2σ2, and σ the dimensionless width of the Gaussian

potential.

� The WDW equation is given now by:(
ℏ2κ∂2β − ℏ2∂2ϕ + 2V0e

−9λ2ϕ2/β2
)
ψ(β, ϕ) = 0.
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LSBR: Quantisation with a 3-form-5-

� The WdW eq. can be solved as follows:
� The matter part can be written in different ways depending on the

approximations used
� Constant potential (exponential decreasing functions)

� Linear approximation for the potential + a B.O. approximation (Airy

functions)

� quadratic approximation for the potential + a B.O. approximation

(Bessel functions)

� The matter part decays to zero at large value of the scale factor.

� The gravitational part are oscillatory or exponential (decaying)

functions.

� it can be shown that there are solutions (wave functions) that

vanishe close to the classically abrupt event. Therefore, the DeWitt

condition is fullfilled. This result can be interpreted as an “abrupt

event” avoidance.

� A similar approach can be implemnted in modified theories of gravity

within a metric and a Palatini approach.
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Conclusions



Conclusions

� We started reviewing the late-time acceleration of the universe

through a wcdm phenomenological approach

� We have also shown that the late-time acceleration of the Universe

can be described through a phantom DE component

� We have looked at the observational fit and the perturbations

� We have described phantom DE through a more fundamental field

encoded in a 3-form or a DE KGB model.

� We have discussed if some of these DE models can help to release

the H0 and σ8 tensions

� Then finally, we have shown using the WDW equation that the DE

singularities or abrupt event can be unharmful in a quantum context.

Xie Xie!!!

Thank you for your attention !!!
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A quantum approach within metric f (R) theory

� The modified WdW equation (first obtained by Vilenkin back in the

80’) [
∂2q −

1

q2
∂2x − V (q, x)

]
Ψ(q, x) = 0,

where the potential is given by

V (q, x) =
q2

λ2

[
k +

fR0

6R0
(f − RfR)

q2

f 2R

]
,

and

q =
√
R0 a (fR/fR0)

1/2
and x = ln (fR/fR0)

1/2
,

� It is a PDE because in metric f (R) theories there is an extra degree

of freedom, the scaleron.
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f (R) quantum cosmology and the BR

� A suitable choice would be

f (R) = α+ Rγ , with γ = 2 +
√
3/2,

� Then

V (q, x) = − A

λ2
e−Bxq4,

q =
√
R0 a (R/R0)

γ−1
2 , x = ln (R/R0)

γ−1
2 ,

where A = γ−1
6γ = 1

30 (1 +
√
6), and B = 2γ−2

γ−1 = 6− 2
√
6.

� The WdW equation becomes[
q2∂2q − ∂2x +

A

λ2
e−Bxq6

]
Ψ(q, x) = 0.

� It cannot be solved exactly but it can be shown there are
approximate solutions (wave functions) that vanishe close to the
classically singularity. Therefore, the DeWitt condition is fullfilled.
This result can be interpreted as an singularity avoidance.

Alonso-Serrano, Bouhmadi-López and Mart́ın-Moruno, PRD [arXiv:1802.03290 [gr-qc]].Borislavov Vasilev, B.L., Mart́ın-Moruno, PRD,

[arXiv:1907.13081 [gr-qc], PRD, arXiv:2103.12786[gr-qc] (f (R) metric theories)
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