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Introduction




Introduction-1-: A brief sketch of the universe

e The universe is homogeneous and isotropic on large scales
(cosmological principle)
e The matter content of the universe:
e Standard matter
e Dark matter

e Something that induce the late-time acceleration of the

Universe

e The acceleration of the universe is backed by several
measurments: H(z), Snela, GRB, BAO, CMB, LSS (matter

power spectrum, growth function)...



Introduction-2-

e The effective equation of state of whatever is driving the current

speed up of the universe is roughly -1 (Please see Saridakis talk)..
e Such an acceleration could be due

e A new component of the energy budget of the universe: dark energy;
i.e. it could be A, quintessence or of a phantom(-like/effective)
nature

e A change on the behaviour of gravity on the largest scale. No new
component on the budget of the universe but rather simply GR

modifies its behaviour, within a metric, Palatini (affine metric) ...



Late-time acceleration of the Universe within
GR: dark energy with a constant EoS




Constant equation of state for DE: background-1-

e Cosmic acceleration:

4G

B
5 - *T(pm al Pde ale 3pde)

Observation indicates that for wge ~ —1 where wge = pae/pde-

Therefore, as soon as DE starts dominating the Universe starts
accelerating, i.e. 3 > 0.

Simplest cases ACDM or wCDM.



Constant equation of state for DE: background-2-

e State finders approach (sahni, saini
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and Starobinsky JETP Lett. [arXiv:astro-ph/0201498])

1.04

e Scale factor: %) =

1+ Z o) [H (t — to)]",

Where A,, = a"/(aH"),
neN.

e State finders parameters:
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Albarran, B.L. and Morais, EPJC 2018 [arXiv:1706.01484]



Constant equation of state for DE: perturbations-1-
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Example of the evolution of the
perturbations: k = 1073 Mpc~!
ACDM model: ¢, vanishes
asymptotically

Phantom model: ®, also evolves
towards a constant in the far future
but a change of sign occurs roughly
at logyy a/ag ~ 2.33, corresponding
to 8.84 x 10%° years in the future.
A dashed line indicates negative
values of ¢

Quintessence model: ®, evolves
towards a constant in the far future
without changing sign

Albarran, B.L. and Morais, EPJC 2018 [arXiv:1706.01484]



Constant equation of state for DE: perturbations-2-

e What about fog for the three different DE models?
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Late-time acceleration of the Universe within
GR and with a phantom fluid




Late-time acceleration of the Universe within
GR and with a phantom fluid

The models



The models

e We are going to focus on the genuinely phantom matter. i.e. when
the Equation of State satisfies w < —1. (not only not excluded but
even favoured observationally)

e The phantom matter violates the Null energy condition. In
consequence, the rest of the energy conditions are violated.

e Null energy condition = p+ p > 0.

0,p=0.

pl.

e Strong energy condition = p+p >0, 3p+p > 0.

e Weak energy condition =p + p >
e Dominant energy condition = p >

e For example, a suitable way to write the Equation of State of a
phantom fluid is

p=—p— Cp®,
where C is a positive constant and « is a real number. We are going
to focus on the cases « = 1,1/2,0.



Genuine phantom m BR, LR and LSBR

e The DE content can be described for example with a perfect fluid or
a scalar field

Event EoS for a perfect fluid Potential for a scalar field
BR Pd = W4pPd V(qf)) = Cbre)\¢

LR | pa=-p-Bym V() = Cig* + Did?
LSBR | pa = —pa—A/3 V(¢) = Cud? + Dis

Where wy < —1, the parameters A and B are positive and Cp,, Cjr, Dy,
Cis and D), are constants.
S
e The lower is the power on ¢ of V (¢), the smoother is the abrupt
event.
(1) A.A. Starobinsky. astro-ph 9912054; R.R. Cadwell astro-ph 9908168; Cadwell et al. astro-ph/0301273
(2) H. Stefanti¢. astro-ph 0411630; S. Nojiri, S. Odintsov and S. Tsujikawa hep-th/0501025; M. Bouhmadi-Lépez
arXiv:astro-ph/0512124.
(3) M. P. Dabrowski, C. Kiefer and B. Sandhéfer. hep-th/0605229
(4) M. Bouhmadi-Lépez , A. Errahmani, P. Martin-Moruno, T. Ouali and Y. Tavakoli. arXiv:1407.2446
Recent Review — de Haro, Nojiri, Odintsov, Oikonomou and Pan arXiv:

2309.07465 (Phys. Rept)



Phantom ener Should we be afraid?

e Evolution of the scale factor for different models vs cosmic time.
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Late-time singularities

DE might induce a future cosmic singularity Asymptotic evolution of the scale factor

Some of the cosmological parameters:

t —— Cosmic time
a —— Scale factor (relative size)
H —» Hubble parameter (growth rate)

H » Time derivative of H . LR
3} BR
EOOnOnEE ||
= LSBR
Big Bang 0 0 o o © ©
Desitter, =~ o Hg 0 0 ; w©
Big Rip t; ®© © o py ACDM
N
LR © o o o o 7 w©
LSBR ® o o H 0 =
BigFreeze t; a; ® © =2 ©
Sudden.S. t; a, Hy, © o ~
Type IV ts |las | Hs | Hg © o E] & 7 % -

Time (107 years)

Bouhmadi-Lépez, Kiefer, Martin-Moruno, arXiv:1904.01836 [gr-qc] (review published in GRG)
Borislavov Vasilev, Bouhmadi-Lépez, Martin-Moruno, arxiv: arXiv:2106.12050 (review published in Universe) 11



Late-time acceleration of the Universe within
GR and with a phantom fluid

Observational data and constraints



Observational data

e The Pantheon compilation: 1048 SNela dataset 0.01 < z < 2.26

e The power spectrum of CMB affects crucially the physics, from the
decoupling epoch till today. Effects are mainly quantified by the
acoustic scale /, and the shift parameter R komatsu et 2008

e The BAO peaks present in the matter power spectrum can be used
to determine the Hubble parameter H(z) and the angular diameter
distance Da(z)

e H(z) data

12



Model fitted

e BR model: pg = wypq

E(a)?> = Qra* + Qma 3 + Qqa3(+wa),

1
e LR model: pg = — (pd + Bpé)

2
[y

E%(a) = Qa * + Qua 3+ Qq 1+§ " in(a) | .
2V Qq

e LSBR model: pg = — (pa + )

QS r
E%(a) = Qa4+ Quma 3 + Qq <1 - # |n(a)> ‘
d

13



BR Model
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LR Model
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LSBR Model

03 031 0.32 0.33 0. 0.02  0.04 0.06 0.08

1.
0.8 0.87 0.8
0.6 0.6 0.6
0.4 0.4 0.4

0.3 0.31 0.32 0.33 0. 0.02 0.04 0.06 0.08 215 22 225 23

O Qsbr 10%h°Q,

Bouali, Albarran, Bouhmadi-Lépez and Ouali, arXiv:1905.07304 [astro-ph.CO]. Published in Physics of the Dark Universe 16



Comparison with LCDM

Model Par Best fit Mean e xR AIC. AAIC.

O 0.31834970 00715001 03183470 000 ooy 1047.42 0.957422 1053.441953 0
ACDM & 0.69814+0.010811 0.69860275-0451787

Qoh? 0.02221870ENTE  0.02222027 000012

Qum  0.31717370 0031500 0.3173277 ) 00aisos  1047.51 0.958380 1055.54663 2.104677
BROw, —LO2mSTONONE —LoasTathoiian

ho 0691013500 0.691523 55GTEN

Q7 002212187000 0.022123%) BRI

Qn  0.317198T00TE0T 0.317705I000R0IE]  1047.53 0.958398 105556663 2.124677
LR 0, 0.000445721F 999416129 0.000763824 399041532

ho 0694604750151 0.688584 00153

Quh? 0.0221295730005055%  0.02210287 5000155733

D 031710570 002030ms () 3161447 0 0020500 104756 0958426 105559663 2.154677
LSBR Qe 0.05002617001500  0.0299424 756135350

ho 06957057005 0.70196275 (155

Qh? 0022383300 0.02219287 5 (003N

Table III. Summary of the best fit and the mean values of the cosmological parameters.

Akaike information criterion (AIC)

17



Late-time acceleration of the Universe within
GR and with a phantom fluid

A perturbative approach: GR and phantom fluids



Our approach

e We start considering that the late-time acceleration of the universe
is described by a dark energy component effectively encapsulated
within a perfect fluid with energy density ps and pressure py. On
this setup, we consider two simple scenario:

e A constant equation of state for DE

e A DE in an effective and genuinely phantom DE universe. The
reason of this second choice will become clear after considering the
first case.

e Of course, on top of this we invoke a dark matter component.

Given that to get the matter power spectrum, we start our numerical
integration since the radiation dominated epoch, we will consider as
radiation as well on our model.

18



Cosmological perturbations: GR and for the late Universe-1

e We worked on the Newtonian gauge and carried the first order
perturbations considering DM, DE and radiation on GR. Radiation
was included because our numerical integrations start from well
inside the radiation dominated epoch (to get the matter power
spectrum)

e We assumed initial adiabatic conditions for the different fractional
energy density perturbations

e The total fractional energy density is fixed by Planck measurments;
i.e. through As and ng

e The speed of sound for DE:

e The pressure perturbation of DE reads:
0pd = c20pa — 3H (1 + wy) (cfd — cfd) paVd, where ¢2, = P4

, opd Folfo
Py

Pq
e Given that cZ, is negative, we can end up with a problem (this is not

and ¢, =

intrisic to phantom matter as it can happen for example with fluids
with a negative constant equation of state larger than -1)
e We choose ¢ = 1 as a phenomenological parameter 19



Cosmological perturbations: GR and for the late Universe-2

e Adiabatic conditions:

8 5d,ini -~ 8

76r,ini - 6m,ini - (S 76ini
4 1+ W ini 4
. = = —~ 6ini
r,ini — Ym,ini — Vd,ini ~ A
ini

e Initial conditions for ¢ are fixed through the amplitude and spectral
index of the primordial inflationary power spectrum:
As =2.143 x 107°, ng = 0.9681 and k. = 0.05 Mpc~! (Planck
values): ®;,; = %’T 2A, (%)ns_l k—3/2

o Well inside the radiation era: ®;,; ~ —%(ﬁot’ini and
DBini & —2Hini Viot, ini

e We choose c2, = 1 as a phenomenological parameter

e The parameters of the models will be fixed through the fitting we
did previously.

20



Results: DM perturbations and the gravitational potential

[6m |

/0,

ki = 3.33 x 10~*h Mpc?, ks = 1.02 x 1072h Mpc !,
ky = 1.04 x 10~*h Mpc?, ks = 3.19 x 1072h Mpc ™!,
ks = 3.26 x 10~3h Mpc !, ke = 1.00 x 10~*h Mpc .

21



Results: DE perturbations

. k=k; | k=k; | . k=k;
k= | o ks | k=ks

ki = 3.33 x 10~*h Mpc !, ks = 1.02 x 1072h Mpc ™!,

k, = 1.04 x 10~*h Mpc !, ks = 3.19 x 10~%h Mpc !,

ks = 3.26 x 10~3h Mpc}, ke = 1.00 x 10~*h Mpc .

22



Results: a closer look at the gravitational potential

0/,

/0,

ki = 3.33 x 10~*h Mpc ™}, ks = 1.02 x 1072h Mpc ™!,
k, = 1.04 x 10~*h Mpc !, ks = 3.19 x 10~%h Mpc !,
ks = 3.26 x 10~3h Mpc}, ke = 1.00 x 10~*h Mpc .

23



Results: The evolution of fog (growth rate)-1-
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kog = 0.125 hMpc 1, 5g(0, kog) = 0.820 (Planck) 24



Effect of the speed of sound, C2,, on DE perturbations
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Albarran, Bouhmadi-Lépez and Marto, arXiv:2011.08222 [gr-qc.CO]. Published in European Physical Journal C.
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Effect of the speed of sound, C2,, on the gravitational potential-

1-
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Effect of the speed of sound, C2,, on the gravitational potential-
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Late-time acceleration of the Universe within
GR and with a phantom fluid

DE and DM models with interactions



DE and DM models with interaction

fMotivations

e Solving the coincidence problem.

e Check if an interaction between DE and DM could statistically
improve the previous models.

e Check if the interaction could attenuate or modify the nature of
future cosmological events induced by the former models
corresponding to BR, LR and LSBR.

e Check whether the previous models A, B and C might respond
differently to the interaction, as they exhibited very similar behaviour
both at the background level and at the perturbative level.

pm ot 3Hpm - *Q,
pa+3H(1 4+ wa)pa = Q.

where

Q = AHpq 28



Comparing Models-1-

Model Par Best fit Mean
AcDM T 0.312308 0 O0EO7ELS 0. 312583 0. 00G07 262
h 0. ﬁ?gﬁm“'% Dc?ﬂ?;:;???ss 0. 573435“‘% Dc?ﬂ?:; 41177
Quh?  0.022610 O QOOHETE - 0.0224002 1, OIS
\ACDM O 0. 31473st%230%%3§2‘:55 u,315252t%930%%3§21122
A 0.00992075+% 03111655;7% 0.011897 HE' 0. Ull 11 5;435
Quh?  0.02266981 0000100 g 022a8s5 T 0.ODDLEOTIE.
IBR fhaa o 3105542]3 %UB;JZDEQB 0 31219t%%%3223111199
v e et
A o,msssss*?]ﬂulls;fﬂ% u,mmszz*‘i’]“&fﬁ&é
b 0-s2033 G T 0.6813657 R
Q,h% 0.0224867 10 %ﬁaﬁa‘:ﬁ 0.0224764 1 0: %555;2255
R O 0. 310515t%?§'077225§‘3:77 0. 309921#:% 05'077225;3'?911
e ooum B o L
Y oome I oomme i
h 0.682015 1 0, 0661987 0. 534313*?39301?12255%
2,47 0. *3224532+°D 00301155114433 00224685+ 0: %5511553311
LseR Om 0. 313552*%0‘"0;’:%;7:1555:% 0.3140187 0 Z g oneroeos
Dispr 0.0a58a190, 014588 0.020568a T4 01401
A 0.0154082 +?] ot 0.0148823 +?] oLaerr

29



Comparing Models-2-

Model anmmf AlCc AAICe

ACDM 1073.9795 1080.0014 0

INCDM 1073.1076 1081.1443 1.1429

IBR 1072.6870 1082.7420 2.7406
ILR 1072.6477 1082.7028 2.7014
ILSBR 1072.6200 1082.7600 2.6685

Notice that All the interacting models will induce a BRI!!!

30



Results: The evolution of fog (growth rate)
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V/
Bouali, Albarran, Bouhmadi-Lépez, Errahmani and Ouali, Phys. of The Dark Universe, arXiv:2103.13432[astro-ph.CO].

We will post the effect of a varying 552 (hopefully) soon arXiv:24XX.XXXXX

e Note: you have as well phantom dark energy models that

approaches a de Sitter Universe asymptotically and give good fitting

31
(work in collaboration with Ferndndez-Jambrina, Lazkoz and Salzano, arXiv:2311.10526, Phys.Dark Univ. 45 (2024) 101511)



Speeding up with fields




Speeding up with fields

Late-time acceleration through a 3-form field



Can we have somethi ore fundamental to describe DE?

e Can we have something more fundamental to describe phantom DE
models?

A possibility come in the form of 3-forms.

e Inspired in string theory: Copeland, Lahiri,Wands (1995)

e Massless 3-form as Cosmological Constant (solving CC problem):

Turok, Hawking (1998)

e [nflation or late time acceleration driven by self-interacting 3-forms:
Koivisto, Nunes (2009) and (2010)

e Non-Gaussianity: Kumar, Mulryne, Nunes, Marto, Moniz (2016)

e Quantum cosmology with 3-forms: Bouhmadi-Lépez, Brizuela, Garay
(2018)

e The answer as we will see in a momment is yes:

Phantom DE models (LSBR): Morais, Bouhmadi-Lépez, Kumar, Marto, Tavakoli (2017),Bouhmadi-Lépez, Marto, Morais and

Silva (2018), C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2024)

32



p-forms in mology

A p-form is a totally anti-symmetric covariant tensor:
W = Wneopp] -

In D-dimensions, the number of degrees of freedom of a massive p-form is

(D —1)!

degrees of freedom = m :

In a 4-dimensional space-time:

e p =0 (scalar field) = 1 degree of freedom
e p =1 (vector field) = 3 degrees of freedom
e p =2 = 3 degrees of freedom

e p =3 = 1 degree of freedom

= The scalar field and the 3-form are the only ones compatible with a
homogeneous and isotropic universe (in an easy way).

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)
T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009) 33



The 3-form action

e We will consider the following action for a massive 3-form, A,

minimally coupled to gravity

1
= / d*xy/| det gy | [—%FWWFWU - V(A’“”’AWP)} :

e The strength tensor, a 4-form, is defined through the exterior
derivative: Fj.p0 =4V, AL 0]

e The equation of motion, obtained from variation of SA s

i 2%
VO-F purp 12@/4;“,[) = 0

e = a massless 3-form is equivalent to a cosmological constanst

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)
T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)
M. Duff and P. Van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980)

34



3-form Cosmology

We consider a homogeneous and isotropic universe described by the
Friedmann-Lemaftre-Robertson-Walker line element

ds? = —dt® + a%(t)y;dx'dx .
t - cosmic time, {} = d{}/dt
a - scale factor
x' - comoving spatial coordinates (roman indices run from 1 to 3).

Only the purely spatial components of the 3-form are dynamical:

Agj =0, A = @ (t)x(t)eji -

T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)
Koivisto and Nunes PLB [arXiv:0907.3883], idem PRD [arXiv:0908.0920]

35



3-form Cosmology: background equations

= Friedmann Equation

1
3H? = k2py = K7 | = (¢ +3HX)" + V(X?)

= Raychaudhuri equation
2 K2 OV

K
-— P)=——xy—.
2(/’)("’ x) 2X(9X

H =
A 3-form can show phantom-like behavior if 9V /dx? < 0.
=- Equation of motion

. . : oV
X+ 3Hx+3Hx+ — =0.
ox

36



3-form Cosmology: evolution of y-1-

Combining the Raychaudhuri equation and the equation of motion for y:

2\ oV
X+ 3HY + <1— ’(2) ~0.
xe/ 0x
The static solutions are:
. . ., oV
e the critical points of the potential: Ve 0,
X
e the limiting points: x = £ x..

Once inside the interval [—xc, x|, the field x evolves towards a local
minimum of V. However. ..

37



3-form Cosmology: evolution of y-2-

e Independently of the shape of a
regular potential, in absence of DM
interaction, the 3-form decays
rapidly towards the interval

[7XC, XC] Koivisto and Nunes PLB [arXiv:0907.3883)], idem

PRD [arXiv:0908.0920]

e In an expanding Universe, once
inside the interval [—xc, X, the
3-form will end up in one of the
minima of the potential (notice
Vet # V).

e If the 3-form stops at the limits of
this interval:

X = £Xc
e —— Universe heads towards a

LSBR event (xc = +/2/3k?)

and x =0

VIiVy

38
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Fitting the model-1-
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Fitting the model-2-

n o

C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2024)

41



Comparing the model to LCDM

. PanPlus + Riess et al . PanPlus + Riess et al.
= DES Y1 \ = DES Y1
. Planck18 + DESI BAO . Planck18 + DESI BAO
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C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2024)
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Further consideration with 3-forms from a gravitational point

of view

Let me add that 3-forms can be quite interesting for further reasons as:

e They allow naturally for regular BHs (gounmaditépez, Chen, Chew, Ong and Yeom, ariv:
2005.13260 [gr-qc]. Published in EPJC 2021 )

e They naturally support wormholes without changing the sign of the
kinetic energy (Bouhmadi—Lo’pez, Chen, Chew, Ong and Yeom, arXiv: 2108.07302 [gr-qc]. Published in JCAP

2021) o
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Speeding up with fields

Late-time acceleration of the universe within Kinetic
Gravity Braiding theories



Kinetic gravity Braiding theories

The gl’avitationa| act|0n (Deﬂ'ayet. Pujolas, Sawiki and Vikman, arXiv: 1008.0048 [hep-th]. Published in

JCAP 2010 ) o

s= [axvz ER +K(6.X) — G, X)06

Passes constraints from GR170817

Essential mixing

(Im)Perfect fluid

Self-tuning de Sitter solution

Phantom behaviour without ghost nor gradient instabilities (where
the equation of state of the scalar field < —1)

We will assume the shift-symmetric case: the action is invariant
under ¢ — ¢ + ¢ where c is a constant

Our goal is to analyse the future evolution of the shift-symmetric
Kinetic Gravity Braiding theories. (goristavov, Bouhmadi-Lopez, and Martin-Moruno

arXiv:2210.07276, 2212.02547, PLB 2023, JCAP 2023)
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Background dynamics

e Conserved shift current: J = ¢5KX + 6XGxH

e Background gravitational equations:

e Friedmann eq: 3H?> = p+ pr — K + q'SJ

e Raychaudhuri eq: H= f% (p,,, + %p,) + XGx¢ — %qﬁJ
e Conservation equations:

® pm = —3Hpm

o p, = —4Hp,

e J= —3HJ, therefore, J = Qo (i>_3.
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A dynamical system approach: definition of the vari-

ables

The matter dimensionless variables reads

_ Pr
2 = 3H2'
— Pm
m = 3H2'
evV2XJ— K
Q¢ —_—————————————
3H2

We assume Qg to be positive since we are mainly interested in the
future attractors of expanding FLRW models. Hence, Q; € [0, 1] for

i€{r,m, ¢}

We carry out our analysis for expanding solutions; i.e. H positive
H h
—=—— —he|0,1
Hy 1—h? [0.1]

Through the above definition we obtain new solutions that were
overlooked previously.

The Friedmann constraint reads: Q, + €, + Qg =1 "



A dynamical system approach: evolution of the system

e Evolution:
" (1 — h?)h
14 h?
Q =-2Q,02+G),
Q;,) =G — 204G,

C17

e Auxiliary functions:

e A prime stands for derivative respect to In(a). i



A dynamical system approach: fixed points

1. Vacuum solutions dominated by matter or the scalar field:
(hP =Qff =0, G # —2 and CF = 2¢PQP)
2. Vacuum solutions where radiation like effects dominates the nearby

evolution of the system, i.e. w:}’f = 1/3. Scaling solutions for the
scalar field. (h =0, C[P = —2 and CPP = _491(‘;):

3. Cosmological singularities (Ex. BR) (h® =1, QP =0, CP # —2
and CF = 2GPQP)

4. InitiaI cosmological singularities. It is a radiation dominated regime
f f f
( wi=1/3). (W =1, P =-2and G’ = —49;)

5. de Sitter solutions Ex. (A # {0,1}, @ =0 and C/P = CfF = 0):

Teodor Borislavov, Mariam Bouhmadi-Lépez, and Prado Martin-Moruno arXiv:2210.07276, 2212.02547, PLB 2023, JCAP 2023
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Fixed Point (h®, QP 0F) wP wh p<-1 p=-1 -L<p<-1 p=-1 -l<p<o0<p<}i B=3 +<8

»
Py (vacuum) (0,0,0) ﬁ 0  saddle saddle saddle saddle saddle attractor attractor attractor
P2 (vacuum) (0,1,0) Fre ﬁ attractor ~ — saddle — saddle saddle — saddle
P3 (vacuum) (0,0,1) % 3+ saddle  saddle saddle saddle saddle saddle — saddle
P, (BB) (1,0,0) ﬁ 0  saddle saddle saddle saddle saddle saddle  saddle saddle
P; (BB/BR) (1,1,0) wlﬂ 4dl+l saddle — attractor — repeller repeller — saddle
Ps (BB) (1,0,1) é 2 repeller repeller repeller repeller repeller saddle — repeller
Pr (BF) (1,1,0) —o0 —oo — — — attractor” — — — —
L;(dS) (h?,1,0) -1 -1 —  attractor — — — — — —

L, (sudden) (h'P,—48,0%) —cc —oo — — — — attractor* — — —

Ly (vacuum)  (0,QF, QF) 3 : — — — — — — saddle —
L; (BB) (Lofaf L 1 — — — — — — repeller  —

TABLE I. Classification and linear stability of the fixed points of our model. A superscript “fp” indicates evaluation at the
fixed point. A horizontal bar denotes that the corresponding fixed point does not exist. The physical interpretation of each
point is shown in brackets where BB stands for Big Bang and BF for Big Freeze. The labels Ly, Lz, Lz and L, represent sets
of non-isolated fixed points where A can take any values. In addition, QP € [0, 1+ 4] holds for Ly, and Q'f +QF =1 for Ly
and Ls. The starred quantities designate fixed points that have eluded our dynamical system analysis because of the choice of
the dynamical variables but whose existence and stability follows directly from the Friedmann equations.
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Proxy model: K(X) =0 and G(X) = ccX”




Proxy model: K(X

e 0, ; ]
e, |
D2t q
P Sl S SN SO A IR B
—4 -2 [ 2
—logy, (1 + 2

—logy, (1+2)

FIG. 2. Nur

ical evolution of the dynamical system (19)-

(21) for 8 = —2/5 with the same initial conditions as in figure

1. Top panel: the variable h and the partial densities €2, for

i = {m.r.p}. Bottom panel: the effective equation of state

parameter w.g and the equation of state parameter wy for 51
the scalar field.




Stability of the system we have analysed at the pertubative

level

1. At zero order (background): the system is stable, i.e. there are
attractor solutions.

2. At first order: (at least for the simplest model we have analysed) a
tachyonic or a ghost issue can arise and they are complementary; i.e.
if we avoid one, the other one shows up. We think the tachyonic one
is more problematic as it can affect the large scale structure. The
other one can be shown to be (potentially) avoided when quantising
gravity and the matter fields.

3. Dark-energy fluctuations features ghost and/or gradient instabilities
for gravitational-wave amplitudes that are produced by typical binary
systems.

P. Creminelli, G. Tambalo, F. Vernizzi and V. Yingcharoenrat, arXiv:1910.14035, JCAP 2020

Teodor Borislavov, Mariam Bouhmadi-Lépez, and Prado Martin-Moruno arXiv:2406.12576
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DE singularities: a quantum approach




On the quantum fate of singularities in a dark-energy dominated

universe

e So far, there is no fully successful quantum gravity theory
that would lead to THE theory of quantum cosmology

e There are, however, several approaches in this direction as we
have heard on this conference. Here we will follow the most
conservative one which corresponds to the Wheeler deWitt

approach.

e The Wheeler DeWitt equation is the equivalent to

Schrodinger like equation
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On the quantum fate of singularities in a dark-energy dominated

universe within GR

Within the framework of quantum geometrodynamics and mainly
within a Born Oppenheimer approximation

e |t was shown that the big rip can be removed babrowski, Kiefer and
Sandhéfer, PRD, [arXiv:hep-th/0605229], Alonso, B.L. and Martin-Moruno, PRD, [arXiv:1802.03290 [gr-qc]].

e It was shown the avoidance of a big brake singularity «amenshenik,
Kiefer and Sandhéfer 07', PRD, [arXiv:0705.1688].

e It was shown also the avoidance of a big démarrage
singularity and a blg freeze BL, Kiefer, Sandhéfer and Moniz, PRD, [arXiv:0905.2421]

L] Type \Y) singularity is removed BL, Krimer and Kiefer, PRD, [arXiv:1312.5976].

e |t has been shown as well that LR can be removed aarran, 5L,

Kiefer, Marto, Moniz, PRD, [arXiv:1604.08365] .

Reviews on the topic by B.L., Kiefer and Martin-Moruno arXiv:1904.01836 (GRG), T. Borislavov, B.L. and Martin-Moruno
arXiv: 2106.12050 (Universe), On DE singularities in general: de Haro, Nojiri, Odintsov, Oikonomou and Pan arXiv:

2309.07465 (Phys. Rept) 54



LSBR driven by a scalar field

e Phantom scalar field ¢: py = —%gﬁ2 +V(), py= —%q'ﬁz — V(9)
$+3HG—V/(¢) =0, V(¢) = § +2mAG (¢ — ¢1)’

a =In(a/ao)

(< /o /

a8 g

VA
&

o B B
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uantisation with a scalar field

e The Wheeler-DeWitt equation:
2 |6 002 g2
e Can be solved within the BO:

e The gravitational part are oscillatory or exponential functions.

2 2 82 82
h{“ }wm@+£ﬁwwW@@:o

e The matter part can be written as parabolic cylinder functions that
decay to zero at large value of the scale factor.

e It can be shown that there are solutions (wave functions) that
vanishe close to the classically abrupt event. Therefore, the DeWitt
condition is fullfilled. This result can be interpreted as an “abrupt
event” avoidance.

Albarran, BL, Cabral, Martin-Moruno, JCAP, [arXiv:1509.07398] (minimally coupled scalar field)
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LSBR: Quantisation with a 3-form-1-

e The classical action for a FLRW universe (spatially flat) reads:

S=5,+5 —/dtVN _"é2+ifa3v
T OATOEH 2kN2 ' 2a3N2 '

where ¢ = a%y.
e The classical Hamiltonian for a FLRW universe (spatially flat) reads:

H=N —£2+i32+a3v
- 2apa 2p¢ )
where
oL aa L ¢

PSRN P T 5T BN

B.L., Brizuela and Garay, JCAP, [arXiv:1802.05164 [gr-qc]] (3-forms)
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LSBR: Quantisation with a 3-form-2-

e The classical Hamiltonian for a FLRW universe (spatially flat) can
be rewritten as:

H=N <;GABPAPB +a*V (6(a3¢)2)> ,

with A and B indices referring to a or ¢ and the mini-superspace
metric given by

(o)
>
[os)
|
7N
\
©ula
mw o
~
o
(o]
Il
VR
\
© .l
Y- o
~
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LSBR: Quantisation with a 3-form-3-

e With the usual prescription, we transform the classical dynamical
variables into quantum operators by means of the Laplace-Beltrami

operator:

2

GABpApB — —\/h_iGaA(\/ —GGABaB) s

where G is the determinant of Guag.

e The Wheeler-DeWitt equation then reads:

(h*K0% — B295 +2V) §(B, ) = 0,
and B8 =a%/3 .
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LSBR: Quantisation with a 3-form-4-

e The potential:
V = Voe XX = e N9/8

with \2 = /1/202, and o the dimensionless width of the Gaussian

potential.

e The WDW equation is given now by:

(hznaf, o 2v0e-9A2¢2/52) W(B,4) = 0.
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LSBR: Quantisation with a 3-form-5-

e The WdW eq. can be solved as follows:
e The matter part can be written in different ways depending on the
approximations used
e Constant potential (exponential decreasing functions)
e Linear approximation for the potential + a B.O. approximation (Airy
functions)
e quadratic approximation for the potential + a B.O. approximation
(Bessel functions)
e The matter part decays to zero at large value of the scale factor.
e The gravitational part are oscillatory or exponential (decaying)
functions.
e it can be shown that there are solutions (wave functions) that
vanishe close to the classically abrupt event. Therefore, the DeWitt
condition is fullfilled. This result can be interpreted as an “abrupt

event” avoidance.

e A similar approach can be implemnted in modified theories of gravity
within a metric and a Palatini approach.
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Conclusions




Conclusions

e We started reviewing the late-time acceleration of the universe
through a wedm phenomenological approach

e We have also shown that the late-time acceleration of the Universe
can be described through a phantom DE component

e We have looked at the observational fit and the perturbations

e We have described phantom DE through a more fundamental field
encoded in a 3-form or a DE KGB model.

e We have discussed if some of these DE models can help to release
the Hy and og tensions

e Then finally, we have shown using the WDW equation that the DE
singularities or abrupt event can be unharmful in a quantum context.

Xie Xielll
Thank you for your attention !!!
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A quantum approach within metric f(R) theory

e The modified WdW equation (first obtained by Vilenkin back in the
80")
2-ta_v v =0
q_? x (q,x) (q,X)— )

where the potential is given by

2 2

q fro q

V(g,x) = —= |k+ — (f — Rfg) —
(q/X) 2 |: +6R0( R) f‘,%] )

and

= \/ﬁoa(fR/fRo)l/z and x = III(fR/fRo)l/z,

e It is a PDE because in metric f(R) theories there is an extra degree
of freedom, the scaleron.
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f(R) quantum cosmology and the BR

e A suitable choice would be

f(R)=ay R, with v =24+/3/2,
e Then P
V(q,X) = _Feisxq‘lv
=} -1
:\/ 0a R/Ro 2 (R/Ro) 2
where A= 2=% = %(1+1/6), and B 2—%_6—2\@.
e The WdW equation becomes

qzag -3+ %e“gxq6 V(q,x) = 0.

e |t cannot be solved exactly but it can be shown there are
approximate solutions (wave functions) that vanishe close to the
classically singularity. Therefore, the DeWitt condition is fullfilled.
This result can be interpreted as an singularity avoidance.

Alonso-Serrano, Bouhmadi-Lépez and Martin-Moruno, PRD [arXiv:1802.03290 [gr-qc]].Borislavov Vasilev, B.L., Martin-Moruno, PRD,

[arXiv:1907.13081 [gr-qc], PRD, arXiv:2103.12786[gr-qc] (f(R) metric theories)
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