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Outline

e Study 1-loop UV divergences in Quantum Gravity:
systematize old results
and get new ones with new methods

e Older methods: Schwinger-DeWitt heat kernel approach
and worldline path integrals

e Graviton in first quantization: the N = 4 spinning particle
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Quantum gravity

Study 1-loop divergences of Einstein-Hilbert action
in D euclidean dimensions

Slgul =3 [ d°xva[Alg) - 2]

Aim is to systematize old results and get new ones with novel methods
K2 =16mGy ~ ME,,*D is the coupling constant, A cosmological constant

Classical equations of motion
1
H;w - §QWR +AGuw = 0

imply a constant scalar curvature: R = 2ZA
and Ricci tensor is proportional to metric tensor: R, = Ag..

e Spacetimes with such metrics are called Einstein spaces.



e Study divergences of Einstein-Hilbert action by viewing it as an
interacting QFT, treated perturbatively in terms of Feynman diagrams
built from propagators
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and vertices

_Db
® The coupling constant k ~ Mg, * s of negative mass dimension and
makes it into a nonrenormalizable QFT in D > 4

® How to characterize its UV divergences? Study divergencies at 1-loop




Quantum gravity

® Use background field method: rename g,.. — G..

1G] =~ / o*xv/G[R(G) - 2]

and split G, (X) = guv(X) + hu(X)
N—— S——
background  quantum field

® The 1-loop effective action I'[g] is given by the path integral

e_r[g] — 7S[g+h]|quadratwcinh — Det_% F Detg =e
S~

graviton  ghosts

/ Dh
Vol(Gauge)



® Thus, 1-loop effective action I'[g] is given by

3

Mgl = .,o = —1In (Def%FDetS> = %Trln F—-Tring

e At this point, one may use the Schwinger-DeWitt heat kernel method by
representing the logarithm in terms of a “proper time" T

a_  [=dT,__ar b1
Inbf/O _,_(e e )

and extending the formula to operators. Dropping an infinite constant
one finds the effective action in terms of heat kernels

o= S -3 [ F (vl ] -enfe)




e I'[g] is in general gauge dependent, but it is gauge invariant on-shell

Use background equations of motions (g,. metrics of Einstein spaces) to get
gauge invariant results.

« To identify divergences, one calculates I'[g] using an expansion for small
proper time T of the heat kernels

Mol = Tar (Tr[ 7] - 2T [
z/dD [—/ dTemZTQ ian ]

the mass m? is an IR regulator.

e The small T expansion gives the 1-loop UV divergences (arising from the
T — 0 integration limit) in terms of the Seeley-DeWitt coefficients an(x)

D=4 — aa,a
D=6 — asaa,a



D dTe’”T >
rlol ~ [d®x/g(x) { 5 > anlx }

(4w T) 2

We see that in even D dimensions there are divergences in T — 0 region.
Integrate term-by-term in the proper-time T to find the gamma function I'(x)

00 mT
/ dT e " DT,,: 1D 1 Dr<n—9)
o T (4rT)% (4m)2 (mR)"~ 2 2

Recognize diverging terms:

D=4 — divergencesforn=0,1,2,
D=6 — divergencesforn=0,1,2,3

D — divergences forn=0,1,2,3,---,

NS



Evaluated on-shell, the metric must satisy R, — 3 guv R+ Agu, = 0,
i.e. A= 22Rand R., = 5 g R, coefficients become gauge invariant

a = w (number of degrees of freedom of the graviton)
D? - 3D — 36
a1 = ?R
5D° —17D? — 354D — 720 ., D? — 33D+ 540 ,
& = 720D A+ 360 R oo
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Values at D = 4

ap —>D:4 2
a ﬂ — g R
@ 0t g B (log div)

40 45 Hvee
o 't Hooft-Veltmann ’74 (A =0i.e. R =0): a» = 0 up to total derivatives
— QG renomalizable at one-loop
e Gibbons-Hawking-Perry '78: coefficient of topological R WU term
e Christensen-Duff '80 (A #20i.e. R#0): a#0
— QG with cosm. const. is non-renomalizable
e UV divergences at 2-loop (Goroff-Sagnotti 86, van de Ven '92) or at 1-loop

with generic matter fields
e search for improved UV theories: supergravities, superstrings, and other

more recent proposals



Values at D = 6
D=6
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Comparison with the literature: results only known for A = 0
Thus, set A =0 (i.e. R =0) and use Gauss-Bonnet theorem

9

o ap v
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agreement with:
van Nieuwenhuizen '77, Chritchley '78;
Gibbons-Ichinose 2000, Dunbar-Tuner 2003



Gauge invariant coefficients
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e For D > 8, previous coefficients provide only a subset of the divergences of
quantum gravity

o Coefficients are gauge invariant and characterize quantum gravity at 1-loop
e Benchmark for alternative approaches to (perturbative) quantum gravity

We have used three methods for their calculation:
1. Standard Schwinger-DeWitt heat kernel method
2. Worldline path integrals for computing the heat kernel
3. First-quantized graviton: the N=4 spinning particle



Methods 1 and 2: Heat kernel and worldlines

In the Schwinger-DeWitt heat kernel method we had

Mol = —% OOO i; (e~ - 2Tr[e ™))

where the differential operators

Fu®T = =67 67) (V2 + 2N — R) — 2607 A7) — 2R, ")

wov
1 oT 2 oT oT
~p_o9w9 R+ mgw'q + 97" R
3 = —6.V: — Rl

are interpreted as fictitious quantum mechanical Hamiltonians.



Expansion of the heat kernel trace for small proper time T has the form

e " = / d”x/9(x) > (x,ile”|x, i)

_ D N n
,/d x\/g(x)[(AﬂrT)L27 ;Oan(x\H)T

where the heat kernel coefficients a,(x|H) are sometimes called
Seeley-DeWitt coefficients.
an(x|H) can be computed by using recursive relations obtained from the heat

equation (i.e. the Schrédinger eq. for imaginary time) satisfied by the kernel
e T (i.e. e ™ for t = —iT that achieves the so-called Wick rotation).

This is method 1.




As for method 2, use the equivalence of operatorial methods with
path integrals to compute the heat kernels for the operators H = (F, §)

STH X(D=x —S[x(1)]
(xsle” Xy = Dx(r)e
x(0)=x;

Tr [e’TH] - / d°x (xle"™M|x) = [ Dx(r)e SKC)
PBC

S[x(7)] is the action corresponding to the quantum Hamiltonian H
PBC = Periodic Boundary Conditions

— Need to identify the actions S related to the operators H



Worldline actions for the Hamiltonians H arising from QG where constructed
in D = 4 by separating a traceless graviton from its trace

- 1
h;uj = huu + Eg;uj h

(FB, Roberto Bonezzi in 1304.7135, JHEP 07 (2013) 016)
and extended to arbitrary D dimensional backgrounds with Einstein metrics

RW = )‘g;w
to find the operators
_ <2 2R
Hy = -V 5
vo_ 2 R v
(Ho)u” = — (V2 + 5)5#

(Hp)u”” = —V26060 — 2R,.".°

(FB, Mattia Damia Paciarini in 2305.06650, CQG 41 (2024) 11, 115002)



1. The scalar particle
The scalar particle (the trace of the graviton) is the simplest system.
It shows almost all of the technical details of the worldline approach.

o In flat space a free particle (of mass m = —) with Hamiltonian

H = —8* = p? has classical action S[x(7)] = fo dr 1X* and gives rise to
Tr [e‘TH} = Dx(r) e~ = /dDX ! D
Jpec (47 T)2

e In curved space, the Hamiltonian H = —V? + V(x) with laplacian

1 b
V2 = ﬁau\/gg“ A

has quantum ordering

1

H=g (%) Bur/a(X) @ (%) B g4 (X) + V(R)

with classical Hamiltonian Hy = g"¥(x) p.p. + V(x) and action

SIx(r)] = /0 dr (390X 5 + V()



For the particle related to the graviton trace we need a specific potential

Hy= V2= 5

and in the path integral we must use

T 1 ey 2
Sh[x] :/0 dr (Zgw(X)X“x - 5R+ ch>

< dT _TH,  dT —Splx]
r =—= —Tr = Dx e ™"
ol ==3 ) 7 o] 2 T Jose

so that

The explicit perturbative path integral computation leads to
©dT [ d°x/g D+12
rldl = Tl m(%e)
(4nT)2

2 o2 (5D% + 118D + 720
+TR< 36002

1
T2H12L1//>a (180) + O(T3):|



Technical details

e counterterms
e nontrivial measure and measure ghosts
o factorization of zero modes

e Counterterms: the action Sp[x] = f01 dr (35 Guv (X)X*X" 4+ ...) is a
nonlinear sigma model with derivative interactions.

As a (0+1) QFT, it is super-renomalizable and needs

finite counterterms to match renormalization conditions

(i.e. require that K is the quantum Hamiltonian associated with it).
Here are the countertems associated with some reg. schemes

Time slicing Vrs = —%F? + %g””rﬁnrgp

Mode regularization Vg = —%R — %gwg“ﬁgmrﬁyrlﬁ

Worldline dimensional regularization Vpr = f%R



e Measure ghosts: Express the covariant measure in path integral as

Dx =[] Va(x(7)) d°x(r) = Dx / DaDbDc e~ SanlX-ab:cl

;
Sgnlx, a, b, c] = / dT:—Tg,,,u(x)(a“a” + b'c”)
0

where Dx = []_d°x(r) is the translational invariant measure, etc.
Note that @ is bosonic while b*, ¢* are fermionic.

In the sigma model this amounts to the shift
xXHx¥ — xtx" + a*a” + b'c”

These “measure ghosts" give rise to divergences that compensate the
divergences from the (xx) correlators, thus cancelling divergences on the
worldline — in particular, the counterterms are finite



e Factorization of zero modes: With periodic boundary conditions on the path
integral, can expand paths by

X4(r) = X+ (7)

x{' is the constant zero mode to be factored out and integrated at last (it
remains as the spacetime integration of the effective lagrangian)

The two most commonly used methods are:

e Dirichlet boundary conditions method (DBC): g#(0) = g*(1)

O

o String-inspired method (SI): f01 drg'(r)=0

@



2. The vector (ghost) particle

The ghost particle needs additional degrees of freedom on the worldline.
To realize a vector index on the wave function on which H,. acts, consider
coordinates x*, p, and complex worldline fermions \*, \,,.

[XM7pu]:i55 ) {)\M7/_\V}:55

They act on the Hilbert space of antisymmetric tensor fields

D
W) ~ WX 0) = D Wi (X) X X
n=0

Devise a projection to keep only W, (x) in the physical space:
couple to a U(1) worldline gauge field a(7) with specific Chern-Simons (CS)

coupling s



Recall operator (Hpc)," = — (V2 + %)511
Action is

1
ShelX, \, X, 8] = / dr {41—7_ Guv X" X" + Xy (D- + ia) N + Vit + isa
0

with CS coupling s =1 — g. The path integral gives

. o0 ﬂ —THpe | _ /OO ﬂ DXD)\DS\Da —Spelx, A X, 4]
Fcld] _/0 T Tr [e }_ o T Jpa Vol(Gauge) ©

- /0"” diTT / (erxr\)/?g {DJF " <#>

> o (5D?+ 58D+ 180 I D—15 5
TR (W T e Tig0 )+ O




3. The tensor particle (graviton)

Also the graviton needs additional degrees of freedom on the wil.
To realize symmetric indices on the wave function for (Hz),...””, consider now
complex worldline fermions which form traceless, symmetric, rank 2 tensors

, o 2
o) =iol, (™, Pes} = 0203 + 0302 — 5500

They act on the Hilbert space composed of wave functions of the form

(D+2)(D—1)
2

W) ~W(x,p) = > Wapy,eany, (X) @1y
n=0

Again we need to project to occupation number 1 by coupling to a U(1)
worldline gauge field a(7)



Thus, for the operator (Hp),..”” = —V?26557 — 2R,.”.7 the worldline action is

- T U ) 1 -
Splx, 9,1, 8] Z/dT[ﬁgqu X“+§¢ab(Dt+/a)¢ab—§ abod 2P 4
0

(dots refer to Vi and CS term) and the path integral gives
1 dT _TH / a7 DxDyDyDa o Skl

r —Tr
==z = p/a Vol(Gauge)
B dT/ C/DX\f{ (D4+2)(D— Jr7—,3([)&027140724)

471_7_ 2 12D

L T2R? <SD4+3D37132D2—236D—1440) + TzRippa <027290+47s> + O(Ts)}

720D2 360



Summing all 3 contributions give the total ao, a1, a given earlier

As for the as coefficient, we have used the N = 4 spinning particle,
to be discussed next



Method 3: graviton and the N=4 spinning particle

e A more principled way of treating the graviton in first-quantization

e One-loop effective action computed by a worldline path integral

DX* DG o~ SIX.Gigu] _

M9 = st Vol(Gauge)

where X* = (x*,¢!") and G = (e, xj, aj) withi=1,...,4
are the dynamical variables describing the graviton in first-quantization
e Preliminaries:

i) scalar bosonic relativistic particle (N = 0 model)
ii) spin 1/2 relativistic particle (N = 1 model)



N = 0 bosonic particle

Consider the particle’s worldline x* (1)

. 1
Six,p, e] = /dT (pﬂx“ -e5 (pup“ + m2) )
|

H

1 4. 1
2 N/dr<2e 1x”xu—2em2>
4 |
~—m/d7-\/ —X?

e reparametrization invariance: gauge symmetry generated by constraint H
e last form is the particle equivalent of the Nambu-Goto string action

e at the quantum level: constraint H — Klein-Gordon equation

~

H=0 - Hig) =0 ~ (~O+m’)p(x)=0



N =1 spinning particle

For the spin-1/2 particle need exira degrees of freedom to describe the spin.

The phase space action in the massless case is

. i 1 )
S= /dT (puxu + 5%1/)“ —€ (Epupu) —IXi (PMP”) )
N——— N——
H Q
e Constraints H, Q generate a gauge symmetry: local N = 1 supersymmetry
{Q,Q} = -2iH

¢ At the quantum level: Q constraint — Dirac equation

Q=0 =  Q)=0 ~ +9.4(x)=0



N = 4 spinning particle

N=4 spinning particle in flat space (i = 1, ..., 4)

S= /dT (,Ou).(# + éwuﬂ/},“ —€ (%pupu) —ixi (p}ﬂ/} ) a’/ (’¢ wm))

H Qi Jij

{Qi, Q} = —2iozH, {Jj, Qk} = Qi — 6 Q;, {Jjj, Ju} = OjxJi + 3terms

e Poincaré invariant — relativistic particle

e First class constraint algebra (N=4 susy algebra) — gauge system

e Graviton in D = 4, but not in other dimensions!

o Difficult to couple to backgrounds preserving first-class algebra

e BRST methods to get graviton for arbitrary D dimensional Einstein spaces
by relaxing gauging of full R-Symmetry group SO(4) to parabolic subgroup
(Bonezzi, Meyer, Sachs, JHEP 10 (2018) 025; arXiv: 1807.07989)



N=4 spinning particle and the graviton
Path integral for BRST model: upon gauge-fixing

r[guu]:—%/ooodf;—/o%g OZW o 0 ¢)/Dx/DwD¢efsg

with gauge-fixed action (i = 1,2 using complex fermions v;, ¢')
1
1 chiy  Tiarsim . i) 2 b
Sy :/dT [ﬁ QW(X)X”X +'¢,a(6§ D; + ’ai*)'(/)ja — TRabed wa'wb 1/)0"(/)‘1 + TVO-H:I]
0

e Gauge field é{ = ( g 26 ) contains two moduli 6 and ¢

e Scalar potential Vy = f%Fn’ is an improvement term needed in the BRST charge.
Also one needs a regularization Vs = 1R in DR. Then total Vo ¢ = 228 R.
e The measure u(6, ¢) coming from Faddeev—Popov determinants

-2 - 2 . ,
wu(0,¢) = 1 <2cosg> (2cosg> 2i sin 0+” (2/ sin 92 ) e fa(0+9)

includes the Chern-Simons coupling q = %

FB, Bonezzi, Corradini, Latini, JHEP 11 (2019) 124, arXiv:1909.05750;
FB, Bonezzi, Melis, Eur.Phys.J.C 82 (2022) 12, 1139, arXiv:2206.13287



e Then

gl =3 | F [ 4m2 (=)

where ((...)) denotes the perturbative corrections of the path integral and
subsequent modular integration.

o It is consistent only on Einstein spaces + Q2psr =0

e The path integral gives an answer for Einstein spaces of the form
<<e’s"”’>> —a+aT+aT?+a T +O(T

with the explicit coefficients computed up to this order and given earlier.

o Final result cross-checked with heat kernel methods



The heat-kernel at two worldline loops: an example of the calculations

—TH
(xole™ "lxo) =

Set x(7) = xp + q(7). To get order T2 expand in Riemann normal coordinates and identify needed interactions

SV

o B 1 T a8
+0 = Sp= FR(\;AUS(XO)/Oqu q”°q"q

1
Iuv (X0 + ) = guv(Xo) + ERauuB(Xﬂ)q q T

Using the Wick contractions for the quantum field q with propagator (q(7)q(c)) = —2TA(T, o) get

TR(x) [1 one er2y _ _ TR(x0)
3 /OdT[A(A +Agh)— A]l_,_f— 2

—(Sint) =

Thus N ; TA(0)
(xole™ M 1xp) = 1o N0 or2y
o O 4n? [ 12 ]



Detailed discussions on path integral technicalities can be found in the book
F.B. and Peter van Nieuwenhuizen,

“Path Integrals and Anomalies in Curved Space" (CUP, 2006)

See also a forthcoming book

F.B. and Christian Schubert,

“Worldline Path Integrals and Quantum Field Theory" (CUP, expected 2025)




Conclusions

Systematized old results in QG and computed the gauge
invariant coefficients up to ag in arbitrary dimensions:
characterization of QG at 1-loop

Studied graviton in first quantization with the N = 4 particle

Other applications of the N = 4 spinning particle?

Other interesting BRST particle models?






