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Outline

• Study 1-loop UV divergences in Quantum Gravity:
systematize old results
and get new ones with new methods

• Older methods: Schwinger-DeWitt heat kernel approach
and worldline path integrals

• Graviton in first quantization: the N = 4 spinning particle
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Quantum gravity

• Study 1-loop divergences of Einstein-Hilbert action
in D euclidean dimensions

S[gµν ] = − 1
κ2

∫
dDx

√
g
[
R(g)− 2Λ

]

• Aim is to systematize old results and get new ones with novel methods

• κ2 = 16πGN ∼ M2−D
Pl is the coupling constant, Λ cosmological constant

• Classical equations of motion

Rµν −
1
2

gµνR + Λgµν = 0

imply a constant scalar curvature: R = 2D
D−2Λ

and Ricci tensor is proportional to metric tensor: Rµν = λgµν
• Spacetimes with such metrics are called Einstein spaces.



• Study divergences of Einstein-Hilbert action by viewing it as an
interacting QFT, treated perturbatively in terms of Feynman diagrams
built from propagators
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· · ·

• The coupling constant k ∼ M
− D

2 +1
Pl is of negative mass dimension and

makes it into a nonrenormalizable QFT in D ≥ 4
• How to characterize its UV divergences? Study divergencies at 1-loop

472 The coupling to gravity

at a double copy structure as in the case of gauge theories with respect to gravity, a

leitmotiv of much of the recent research on gravitational amplitudes. Let us present

here the resulting worldline path integral on the circle that produces the one-loop

e↵ective action for the graviton. Formally, one would write a path integral of the

form

�QFT
grav [gµ⌫ ] =

Z

S1

DG DX

Vol(Gauge)
e�Sgrav[X,G;gµ⌫ ] = . (16.124)

The subtlety is that the gauge symmetries (which include the mentioned parabolic

subgroup of O(4)) are expected to be valid only on Einstein manifolds, where Rµ⌫ =

� gµ⌫ , in which case the path integral takes the form

�QFT
grav [gµ⌫ ] = �1

2

Z 1

0

dT

T

Z 2⇡

0

d✓

2⇡

Z 2⇡

0

d�

2⇡
µ(✓, �)

Z

P

Dx

Z

A

D ̄D e�Sgrav

(16.125)

where the nonlinear sigma model action is

Sgrav =

Z 1

0

d⌧
h 1

4T
gµ⌫ ẋ

µẋ⌫ +  ̄ia(�j
i D⌧ � âj

i ) ja � TRabcd  
a ·  ̄b c ·  ̄d + 2T V0

i

(16.126)

with âj
i =

✓
✓ 0

0 �

◆
containing the two moduli ✓ and �, D⌧ is the covariant derivative

with spin connection, and the scalar potential V0 = � 1
D R is an order ~2 improve-

ment term (needed at the quantum level to achieve nilpotency of the BRST charge).

In addition, µ(✓, �) is the measure on the moduli space (✓, �) emerging from the

Faddeev–Popov determinants

µ(✓, �) =
1

2

✓
2 cos

✓

2

◆�2✓
2 cos

�

2

◆�2

2i sin ✓+�
2

⇣
2i sin ✓��

2

⌘2

e�iq(✓+�) (16.127)

extended with a Chern-Simons coupling q = 3�D
2 needed to select the graviton for

arbitrary spacetime dimensions D.

The nonlinear sigma model needs a regularization. Using worldline dimensional

regularization requires a counterterm which for N = 4 is given5 by VDR = 1
8R and

must be added to V0 in (16.126). A perturbative calculation for small T can identify

the divergences in the e↵ective action, and one finds

�QFT
grav [gµ⌫ ] = �1

2

Z 1

0

dT

T

Z
dDx

p
g

(4⇡T )
D
2

DD
e�Sint

EE
(16.128)

where hh. . . ii includes the modular integration of the standard path integral pertru-

5 One must use N = 4 and � = � 1
8 in eq. (5.171).



Quantum gravity

• Use background field method: rename gµν → Gµν

S[Gµν ] = − 1
κ2

∫
dDx

√
G
[
R(G)− 2Λ

]
and split Gµν(x) = gµν(x)︸ ︷︷ ︸

background

+ hµν(x)︸ ︷︷ ︸
quantum field

• The 1-loop effective action Γ[g] is given by the path integral

e−Γ[g] =

∫
Dh

Vol(Gauge)
e
−S[g+h]

∣∣
quadratic in h = Det−

1
2 F︸ ︷︷ ︸

graviton

DetF︸ ︷︷ ︸
ghosts

= e

−
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µẋ⌫ +  ̄ia(�j
i D⌧ � âj
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• Thus, 1-loop effective action Γ[g] is given by

Γ[g] =
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i =

✓
✓ 0

0 �

◆
containing the two moduli ✓ and �, D⌧ is the covariant derivative

with spin connection, and the scalar potential V0 = � 1
D R is an order ~2 improve-

ment term (needed at the quantum level to achieve nilpotency of the BRST charge).

In addition, µ(✓, �) is the measure on the moduli space (✓, �) emerging from the

Faddeev–Popov determinants

µ(✓, �) =
1

2

✓
2 cos

✓

2

◆�2✓
2 cos

�

2

◆�2

2i sin ✓+�
2

⇣
2i sin ✓��

2

⌘2

e�iq(✓+�) (16.127)

extended with a Chern-Simons coupling q = 3�D
2 needed to select the graviton for

arbitrary spacetime dimensions D.

The nonlinear sigma model needs a regularization. Using worldline dimensional

regularization requires a counterterm which for N = 4 is given5 by VDR = 1
8R and

must be added to V0 in (16.126). A perturbative calculation for small T can identify

the divergences in the e↵ective action, and one finds

�QFT
grav [gµ⌫ ] = �1

2

Z 1

0

dT

T

Z
dDx

p
g

(4⇡T )
D
2

DD
e�Sint

EE
(16.128)

where hh. . . ii includes the modular integration of the standard path integral pertru-

5 One must use N = 4 and � = � 1
8 in eq. (5.171).

= − ln
(

Det−
1
2 F DetF

)
=

1
2

Tr lnF − Tr lnF

• At this point, one may use the Schwinger-DeWitt heat kernel method by
representing the logarithm in terms of a “proper time" T

ln
a
b

= −
∫ ∞

0

dT
T

(e−aT − e−bT )

and extending the formula to operators. Dropping an infinite constant
one finds the effective action in terms of heat kernels

Γ[g] =
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= −1
2

∫ ∞

0

dT
T

(
Tr
[
e−FT

]
− 2Tr

[
e−FT

])



• Γ[g] is in general gauge dependent, but it is gauge invariant on-shell
Use background equations of motions (gµν metrics of Einstein spaces) to get
gauge invariant results.

• To identify divergences, one calculates Γ[g] using an expansion for small
proper time T of the heat kernels

Γ[g] = −1
2

∫ ∞

0

dT
T

(
Tr
[
e−FT

]
− 2Tr

[
e−FT

])
≈
∫

dDx
√

g(x)

[
− 1

2

∫ ∞

0

dT
T

e−m2T

(4πT )
D
2

∞∑
n=0

an(x)T n

]

the mass m2 is an IR regulator.

• The small T expansion gives the 1-loop UV divergences (arising from the
T → 0 integration limit) in terms of the Seeley-DeWitt coefficients an(x)

D = 4 → a2, a1, a0

D = 6 → a3, a2, a1, a0



Γ[g] ≈
∫

dDx
√

g(x)

[
− 1

2

∫ ∞

0

dT
T

e−m2T

(4πT )
D
2

∞∑
n=0

an(x)T n

]

We see that in even D dimensions there are divergences in T → 0 region.
Integrate term-by-term in the proper-time T to find the gamma function Γ(x)∫ ∞

0

dT
T

e−m2T

(4πT )
D
2

T n =
1

(4π)
D
2

1

(m2)n− D
2
Γ
(

n − D
2

)
Recognize diverging terms:

D = 4 → divergences for n = 0, 1, 2,

D = 6 → divergences for n = 0, 1, 2, 3

· · · · · ·

D → divergences for n = 0, 1, 2, 3, · · · , D
2
.



Evaluated on-shell, the metric must satisy Rµν − 1
2 gµνR + Λgµν = 0,

i.e. Λ = D−2
2D R and Rµν = 1

D gµνR, coefficients become gauge invariant

a0 =
D(D − 3)

2
(number of degrees of freedom of the graviton)

a1 =
D2 − 3D − 36

12
R

a2 =
5D3 − 17D2 − 354D − 720

720D
R2 +

D2 − 33D + 540
360

R2
µνρσ

a3 =
35D4 − 147D3 − 3670D2 − 13560D − 30240

90720D2 R3

+
7D3 − 230D2 + 3357D + 12600

15120D
R R2

µνρσ

+
17D2 − 555D − 15120

90720
RµνρσRρσαβRαβµν

+
D2 − 39D − 1080

3240
RαµνβRµρσνRραβσ New result!



Values at D = 4

a0
D=4−−→ 2

a1
D=4−−→ −8

3
R

a2
D=4−−→ −29

40
R2 +

53
45

R2
µνρσ (log div)

• ’t Hooft-Veltmann ’74 (Λ = 0 i.e. R = 0): a2 = 0 up to total derivatives
→ QG renomalizable at one-loop

• Gibbons-Hawking-Perry ’78: coefficient of topological R2
µνρσ term

• Christensen-Duff ’80 (Λ ̸= 0 i.e. R ̸= 0): a2 ̸= 0
→ QG with cosm. const. is non-renomalizable

• UV divergences at 2-loop (Goroff-Sagnotti ’86, van de Ven ’92) or at 1-loop
with generic matter fields
• search for improved UV theories: supergravities, superstrings, and other
more recent proposals



Values at D = 6

a0
D=6−−→ 9

a1
D=6−−→ −3

2
R

a2
D=6−−→ −11

20
R2 +

21
20

R2
µνρσ

a3
D=6−−→ − 799

11340
R3 +

481
1680

RR2
µνρσ

+
991

5040
RµνρσRρσαβRαβµν −

71
180

RαµνβRµρσνRραβσ

Comparison with the literature: results only known for Λ = 0
Thus, set Λ = 0 (i.e. R = 0 ) and use Gauss-Bonnet theorem

a3

∣∣∣D=6
Λ=0

= − 9
15120

RµνρσRρσαβRαβµν

agreement with:
van Nieuwenhuizen ’77, Chritchley ’78;
Gibbons-Ichinose 2000, Dunbar-Tuner 2003



Gauge invariant coefficients

a0 =
D(D − 3)

2

a1 =
D2 − 3D − 36

12
R

a2 =
5D3 − 17D2 − 354D − 720

720D
R2 +

D2 − 33D + 540
360

R2
µνρσ

a3 =
35D4 − 147D3 − 3670D2 − 13560D − 30240

90720D2 R3

+
7D3 − 230D2 + 3357D + 12600

15120D
R R2

µνρσ

+
17D2 − 555D − 15120

90720
RµνρσRρσαβRαβµν

+
D2 − 39D − 1080

3240
RαµνβRµρσνRραβσ



• For D ≥ 8, previous coefficients provide only a subset of the divergences of
quantum gravity

• Coefficients are gauge invariant and characterize quantum gravity at 1-loop

• Benchmark for alternative approaches to (perturbative) quantum gravity

We have used three methods for their calculation:
1. Standard Schwinger-DeWitt heat kernel method
2. Worldline path integrals for computing the heat kernel
3. First-quantized graviton: the N=4 spinning particle



Methods 1 and 2: Heat kernel and worldlines

In the Schwinger-DeWitt heat kernel method we had

Γ[g] = −1
2

∫ ∞

0

dT
T

(
Tr [e−FT ]− 2Tr [e−FT ]

)
where the differential operators

Fµνστ = −δ(σµ δτ)ν (∇2 + 2Λ− R)− 2δ(σ(µRτ)
ν) − 2Rµ(σ

ν
τ)

− 1
D − 2

gµνgστR +
2

D − 2
gµνRστ + gστRµν

Fµν = −δµν∇2 − Rµ
ν

are interpreted as fictitious quantum mechanical Hamiltonians.



Expansion of the heat kernel trace for small proper time T has the form

Tr[e−HT ] =

∫
dDx

√
g(x)

∑
i

⟨x , i|e−TH |x , i⟩

=

∫
dDx

√
g(x)

[
1

(4πT )
D
2

∞∑
n=0

an(x |H)T n

]

where the heat kernel coefficients an(x |H) are sometimes called
Seeley-DeWitt coefficients.

an(x |H) can be computed by using recursive relations obtained from the heat
equation (i.e. the Schrödinger eq. for imaginary time) satisfied by the kernel
e−HT (i.e. e−iHt for t = −iT that achieves the so-called Wick rotation).
This is method 1.



As for method 2, use the equivalence of operatorial methods with
path integrals to compute the heat kernels for the operators H ≡ (F ,F)

⟨xf |e−TH |xi⟩ =
∫ x(T )=xf

x(0)=xi

Dx(τ) e−S[x(τ)]

Tr
[
e−TH

]
=

∫
dDx ⟨x |e−TH |x⟩ =

∫
PBC

Dx(τ) e−S[x(τ)]

S[x(τ)] is the action corresponding to the quantum Hamiltonian H
PBC ≡ Periodic Boundary Conditions

→ Need to identify the actions S related to the operators H



Worldline actions for the Hamiltonians H arising from QG where constructed
in D = 4 by separating a traceless graviton from its trace

hµν ≡ h̄µν +
1
D

gµν h

(FB, Roberto Bonezzi in 1304.7135, JHEP 07 (2013) 016)
and extended to arbitrary D dimensional backgrounds with Einstein metrics

Rµν = λgµν

to find the operators

Hh = −∇2 − 2R
D

(Hbc)µ
ν = −

(
∇2 +

R
D

)
δνµ

(Hh̄)µν
ρσ = −∇2δρµδ

σ
ν − 2Rµρνσ

(FB, Mattia Damia Paciarini in 2305.06650, CQG 41 (2024) 11, 115002)



1. The scalar particle
The scalar particle (the trace of the graviton) is the simplest system.
It shows almost all of the technical details of the worldline approach.

• In flat space, a free particle (of mass m = 1
2 ) with Hamiltonian

H = −∂2 = p2 has classical action S[x(τ)] =
∫ T

0 dτ 1
4 ẋ2 and gives rise to

Tr
[
e−TH

]
=

∫
PBC

Dx(τ) e−S[x(τ)] =

∫
dDx

1

(4πT )
D
2

• In curved space, the Hamiltonian H = −∇2 + V (x) with laplacian

∇2 =
1√
g
∂µ

√
ggµν∂ν

has quantum ordering

H = g− 1
4 (x̂) p̂µ

√
g(x̂) gµν(x̂) p̂ν g− 1

4 (x̂) + V (x̂)

with classical Hamiltonian Hcl = gµν(x) pµpν + V (x) and action

S[x(τ)] =
∫ T

0
dτ
(

1
4

gµν(x)ẋµẋν + V (x)
)



For the particle related to the graviton trace we need a specific potential

Hh = −∇2 − 2R
D

and in the path integral we must use

Sh[x ] =
∫ T

0
dτ
(

1
4

gµν(x)ẋµẋν − 2
D

R + Vct

)
so that

Γh[g] = −1
2

∫ ∞

0

dT
T

Tr
[
e−THh

]
= −1

2

∫ ∞

0

dT
T

∫
PBC

Dx e−Sh [x ]

The explicit perturbative path integral computation leads to

Γh[g] = −1
2

∫ ∞

0

dT
T

∫
dDx

√
g

(4πT )
D
2

[
1 + TR

(
D + 12

6D

)

+ T 2R2
(

5D2 + 118D + 720
360D2

)
+ T 2R2

µνρσ

(
1

180

)
+O(T 3)

]



Technical details
• counterterms
• nontrivial measure and measure ghosts
• factorization of zero modes

• Counterterms: the action Sh[x ] =
∫ 1

0 dτ
( 1

4T gµν(x)ẋµẋν + ...
)

is a
nonlinear sigma model with derivative interactions.
As a (0+1) QFT, it is super-renomalizable and needs
finite counterterms to match renormalization conditions
(i.e. require that K is the quantum Hamiltonian associated with it).
Here are the countertems associated with some reg. schemes

Time slicing VTS = −1
4

R +
1
4

gµνΓρµσΓ
σ
νρ

Mode regularization VMR = −1
4

R − 1
12

gµαgνβgργΓρµνΓ
γ
αβ

Worldline dimensional regularization VDR = −1
4

R



• Measure ghosts: Express the covariant measure in path integral as

Dx =
∏
τ

√
g(x(τ)) dDx(τ) = Dx

∫
DaDbDc e−Sgh [x,a,b,c]

Sgh[x , a, b, c] =
∫ 1

0
dτ

1
4T

gµν(x)(aµaν + bµcν)

where Dx =
∏
τ dDx(τ) is the translational invariant measure, etc.

Note that aµ is bosonic while bµ, cµ are fermionic.

In the sigma model this amounts to the shift

ẋµẋν → ẋµẋν + aµaν + bµcν

These “measure ghosts" give rise to divergences that compensate the
divergences from the ⟨ẋ ẋ⟩ correlators, thus cancelling divergences on the
worldline → in particular, the counterterms are finite



• Factorization of zero modes: With periodic boundary conditions on the path
integral, can expand paths by

xµ(τ) = xµ0 + qµ(τ)

xµ0 is the constant zero mode to be factored out and integrated at last (it
remains as the spacetime integration of the effective lagrangian)
The two most commonly used methods are:
• Dirichlet boundary conditions method (DBC): qµ(0) = qµ(1)

�x0
• String-inspired method (SI):

∫ 1
0 dτ qµ(τ) = 0

�x0



2. The vector (ghost) particle

The ghost particle needs additional degrees of freedom on the worldline.
To realize a vector index on the wave function on which Hbc acts, consider
coordinates xµ, pµ and complex worldline fermions λµ, λ̄µ.

[xµ, pν ] = i δµν , {λµ, λ̄ν} = δµν

They act on the Hilbert space of antisymmetric tensor fields

|Ψ⟩ ∼ Ψ(x , λ) =
D∑

n=0

Ψµ1···µn (x)λ
µ1 · · ·λµn .

Devise a projection to keep only Ψµ(x) in the physical space:
couple to a U(1) worldline gauge field a(τ) with specific Chern-Simons (CS)
coupling s



Recall operator (Hbc)µ
ν = −

(
∇2 + R

D

)
δνµ

Action is

Sbc [x , λ, λ̄, a] =
∫ 1

0
dτ
[

1
4T

gµν ẋµẋν + λ̄µ
(
Dτ + ia

)
λµ + Vct + isa

]
with CS coupling s = 1 − D

2 . The path integral gives

Γbc [g] =
∫ ∞

0

dT
T

Tr
[
e−THbc

]
=

∫ ∞

0

dT
T

∫
P/A

DxDλDλ̄Da
Vol(Gauge)

e−Sbc [x,λ,λ̄,a]

=

∫ ∞

0

dT
T

∫
dDx

√
g

(4πT )
D
2

[
D + TR

(
D + 6

6

)

+T 2R2
(

5D2 + 58D + 180
360D

)
+ T 2R2

µνρσ

(
D − 15

180

)
+O(T 3)

]



3. The tensor particle (graviton)

Also the graviton needs additional degrees of freedom on the wl.
To realize symmetric indices on the wave function for (Hh̄)µν

ρσ, consider now
complex worldline fermions which form traceless, symmetric, rank 2 tensors

[xµ, pν ] = iδµν , {ψab, ψ̄cd} = δa
cδ

b
d + δa

dδ
b
c − 2

D
δabδcd

They act on the Hilbert space composed of wave functions of the form

|Ψ⟩ ∽ Ψ(x , ψ) =

(D+2)(D−1)
2∑

n=0

Ψ(ab)1···(ab)n (x)ψ
(ab)1 · · ·ψ(ab)n

Again we need to project to occupation number 1 by coupling to a U(1)
worldline gauge field a(τ)



Thus, for the operator (Hh̄)µν
ρσ = −∇2δρµδ

σ
ν − 2Rµρνσ the worldline action is

Sh̄[x , ψ, ψ̄, a] =
∫ 1

0
dτ
[

1
4T

gµν ẋν ẋµ+
1
2
ψ̄ab
(
Dt + ia

)
ψab − 1

2
Rabcdψ

acψ̄bd + · · ·
]

(dots refer to Vct and CS term) and the path integral gives

Γh̄[g] = −1
2

∫ ∞

0

dT
T

Tr
[
e−THh̄

]
= −1

2

∫ ∞

0

dT
T

∫
P/A

DxDψDψ̄Da
Vol(Gauge)

e−Sh̄ [x,ψ,ψ̄,a]

= −1
2

∫ ∞

0

dT
T

∫
dDx

√
g

(4πT )
D
2

[
(D+2)(D−1)

2 + TR
(

D3+D2−14D−24
12D

)
+T 2R2

(
5D4+3D3−132D2−236D−1440

720D2

)
+ T 2R2

µνρσ

(
D2−29D+478

360

)
+O(T 3)

]



Summing all 3 contributions give the total a0, a1, a2 given earlier

As for the a3 coefficient, we have used the N = 4 spinning particle,
to be discussed next



Method 3: graviton and the N=4 spinning particle

• A more principled way of treating the graviton in first-quantization

• One-loop effective action computed by a worldline path integral

Γ[gµν ] =
∫

S1

DXµDG
Vol(Gauge)

e−S[Xµ,G; gµν ] =

472 The coupling to gravity

at a double copy structure as in the case of gauge theories with respect to gravity, a

leitmotiv of much of the recent research on gravitational amplitudes. Let us present

here the resulting worldline path integral on the circle that produces the one-loop

e↵ective action for the graviton. Formally, one would write a path integral of the

form

�QFT
grav [gµ⌫ ] =

Z

S1

DG DX

Vol(Gauge)
e�Sgrav[X,G;gµ⌫ ] = . (16.124)

The subtlety is that the gauge symmetries (which include the mentioned parabolic

subgroup of O(4)) are expected to be valid only on Einstein manifolds, where Rµ⌫ =

� gµ⌫ , in which case the path integral takes the form

�QFT
grav [gµ⌫ ] = �1

2

Z 1

0

dT

T

Z 2⇡

0

d✓

2⇡

Z 2⇡

0

d�

2⇡
µ(✓, �)

Z

P

Dx

Z

A

D ̄D e�Sgrav

(16.125)

where the nonlinear sigma model action is

Sgrav =

Z 1

0

d⌧
h 1

4T
gµ⌫ ẋ

µẋ⌫ +  ̄ia(�j
i D⌧ � âj

i ) ja � TRabcd  
a ·  ̄b c ·  ̄d + 2T V0

i

(16.126)

with âj
i =

✓
✓ 0

0 �

◆
containing the two moduli ✓ and �, D⌧ is the covariant derivative

with spin connection, and the scalar potential V0 = � 1
D R is an order ~2 improve-

ment term (needed at the quantum level to achieve nilpotency of the BRST charge).

In addition, µ(✓, �) is the measure on the moduli space (✓, �) emerging from the

Faddeev–Popov determinants

µ(✓, �) =
1

2

✓
2 cos

✓

2

◆�2✓
2 cos

�

2

◆�2

2i sin ✓+�
2

⇣
2i sin ✓��

2

⌘2

e�iq(✓+�) (16.127)

extended with a Chern-Simons coupling q = 3�D
2 needed to select the graviton for

arbitrary spacetime dimensions D.

The nonlinear sigma model needs a regularization. Using worldline dimensional

regularization requires a counterterm which for N = 4 is given5 by VDR = 1
8R and

must be added to V0 in (16.126). A perturbative calculation for small T can identify

the divergences in the e↵ective action, and one finds

�QFT
grav [gµ⌫ ] = �1

2

Z 1

0

dT

T

Z
dDx

p
g

(4⇡T )
D
2

DD
e�Sint

EE
(16.128)

where hh. . . ii includes the modular integration of the standard path integral pertru-

5 One must use N = 4 and � = � 1
8 in eq. (5.171).

where Xµ = (xµ, ψµi ) and G = (e, χi , aij) with i = 1, ..., 4
are the dynamical variables describing the graviton in first-quantization

• Preliminaries:
i) scalar bosonic relativistic particle (N = 0 model)
ii) spin 1/2 relativistic particle (N = 1 model)



N = 0 bosonic particle
Consider the particle’s worldline xµ(τ)

S[x , p, e] =
∫

dτ

(
pµẋµ − e

1
2

(
pµpµ + m2

)
︸ ︷︷ ︸

H

)

∼
∫

dτ

(
1
2

e−1ẋµẋµ − 1
2

e m2

)

∼ −m
∫

dτ
√

−ẋ2

• reparametrization invariance: gauge symmetry generated by constraint H

• last form is the particle equivalent of the Nambu-Goto string action

• at the quantum level: constraint H → Klein-Gordon equation

H = 0 → Ĥ|ϕ⟩ = 0 ∼ (−□+ m2)ϕ(x) = 0



N = 1 spinning particle

For the spin-1/2 particle need extra degrees of freedom to describe the spin.

The phase space action in the massless case is

S =

∫
dτ

(
pµẋµ +

i
2
ψµψ̇

µ − e
(1

2
pµpµ

)
︸ ︷︷ ︸

H

−iχi

(
pµψµ

)
︸ ︷︷ ︸

Q

)

• Constraints H,Q generate a gauge symmetry: local N = 1 supersymmetry

{Q,Q} = −2iH

• At the quantum level: Q constraint → Dirac equation

Q = 0 → Q̂|ψ⟩ = 0 ∼ γµ∂µψ(x) = 0



N = 4 spinning particle

N=4 spinning particle in flat space (i = 1, ..., 4)

S =

∫
dτ

(
pµẋµ +

i
2
ψiµψ̇

µ
i − e

(1
2

pµpµ
)

︸ ︷︷ ︸
H

−iχi

(
pµψµi

)
︸ ︷︷ ︸

Qi

−1
2

aij

(
iψµi ψjµ

)
︸ ︷︷ ︸

Jij

)

{Qi ,Qj} = −2iδijH, {Jij ,Qk} = δjk Qi − δik Qj , {Jij , Jkl} = δjk Jil + 3 terms

• Poincaré invariant → relativistic particle
• First class constraint algebra (N=4 susy algebra) → gauge system
• Graviton in D = 4, but not in other dimensions!
• Difficult to couple to backgrounds preserving first-class algebra
• BRST methods to get graviton for arbitrary D dimensional Einstein spaces
by relaxing gauging of full R-Symmetry group SO(4) to parabolic subgroup
(Bonezzi, Meyer, Sachs, JHEP 10 (2018) 025; arXiv: 1807.07989)



N=4 spinning particle and the graviton
Path integral for BRST model: upon gauge-fixing

Γ[gµν ] = −1
2

∫ ∞

0

dT
T

∫ 2π

0

dθ
2π

∫ 2π

0

dϕ
2π

µ(θ, ϕ)

∫
P
Dx
∫

A
Dψ̄Dψ e−Sg

with gauge-fixed action (i = 1, 2 using complex fermions ψi , ψ̄
i )

Sg =

∫ 1

0
dτ
[ 1
4T

gµν(x)ẋµẋν+ψ̄ia(δj
i Dτ+ i âj

i)ψja−TRabcd ψ̄
a ·ψb ψ̄c ·ψd +TV0+ct

]
• Gauge field âj

i =

(
θ 0
0 ϕ

)
contains two moduli θ and ϕ

• Scalar potential V0 = − 2
D R is an improvement term needed in the BRST charge.

Also one needs a regularization Vct =
1
4 R in DR. Then total V0+ct =

D−8
4D R.

• The measure µ(θ, ϕ) coming from Faddeev–Popov determinants

µ(θ, ϕ) =
1
2

(
2 cos

θ

2

)−2(
2 cos

ϕ

2

)−2
2i sin θ+ϕ2

(
2i sin θ−ϕ2

)2
e−iq(θ+ϕ)

includes the Chern-Simons coupling q = 3−D
2

FB, Bonezzi, Corradini, Latini, JHEP 11 (2019) 124, arXiv:1909.05750;
FB, Bonezzi, Melis, Eur.Phys.J.C 82 (2022) 12, 1139, arXiv:2206.13287



• Then

Γ[gµν ] = −1
2

∫ ∞

0

dT
T

∫
dDx

√
g

(4πT )
D
2

〈〈
e−Sint

〉〉
where ⟨⟨. . . ⟩⟩ denotes the perturbative corrections of the path integral and
subsequent modular integration.

• It is consistent only on Einstein spaces ↔ Q2
BRST = 0

• The path integral gives an answer for Einstein spaces of the form〈〈
e−Sint

〉〉
= a0 + a1T + a2T 2 + a3T 3 + O(T 4)

with the explicit coefficients computed up to this order and given earlier.

• Final result cross-checked with heat kernel methods



The heat-kernel at two worldline loops: an example of the calculations

⟨x0|e
−TH |x0⟩ =

1

(4πT )
D
2

⟨e−Sint ⟩ =
1

(4πT )
D
2

(1 − ⟨Sint ⟩ + ...) , S[x ] =
∫ 1

0
dτ

1

4T
gµν (x)ẋµ ẋν

Set x(τ) = x0 + q(τ). To get order T 2 expand in Riemann normal coordinates and identify needed interactions

gµν (x0 + q) = gµν (x0) +
1

3
Rαµνβ (x0)q

αqβ + · · · ⇒ Sint =
1

12T
Rαµνβ (x0)

∫ 1

0
dτ qαqβ q̇µq̇ν

Using the Wick contractions for the quantum field q with propagator ⟨q(τ)q(σ)⟩ = −2T∆(τ, σ) get

−⟨Sint ⟩ =
TR(x0)

3

∫ 1

0
dτ [∆(•∆• + ∆gh) −

•∆2]
∣∣
τ︸ ︷︷ ︸

− 1
4

= −
TR(x0)

12

3.2 The two-loop amplitude and the counterterm VMR 119

= ∂kgij∂lgmn

{
− β

96
(6gklgimgjn − 4gkmgilgjn − gklgijgmn

+ 4gkigjlgmn − 4gkiglmgjn) +
1

48
[2ξiξm(gklgjn − gkngjl)

+ ξkξlgimgjn − ξiξj(gklgmn − 2gkmgln)

+ 2ξkξi(gjlgmn − 2gjmgln)]

+
1

96β
(ξiξjξmξngkl − 4ξkξiξmξngjl + 4ξkξiξlξmgjn)

}
.

(3.43)

These results inserted into (3.40) give the transition amplitude at the
two-loop approximation. The integrals needed for computing the various
Feynman diagrams are evaluated using mode regularization, namely first
they are computed at finite M (and thus without ambiguities) and then
the M → ∞ limit is taken. We first list them here, and then explain in
the next section how the computations in mode regularization are most
easily performed:

I1 = + =

∫ 0

−1
dτ τ (•∆• + ••∆)|τ = 0 (3.44)

I2 = =

∫ 0

−1
dτ •∆|τ = 0 (3.45)

I3 = + =

∫ 0

−1
dτ ∆|τ (•∆• + ••∆)|τ = −1

6
(3.46)

I4 = =

∫ 0

−1
dτ •∆2|τ =

1

12
(3.47)

I5 = + =

∫ 0

−1
dτ τ2 (•∆• + ••∆)|τ = −1

6
(3.48)

I6 = =

∫ 0

−1
dτ ∆|τ = −1

6
(3.49)

I7 = =

∫ 0

−1
dτ τ •∆|τ =

1

12
(3.50)

I8 = =

∫ 0

−1
dτ •∆|τ = 0 (3.51)

I9 = + =

∫ 0

−1

∫ 0

−1
dτ dσ ∆ (•∆•2 − ••∆2) =

1

4
(3.52)

I10 = =

∫ 0

−1

∫ 0

−1
dτ dσ •∆ •∆• ∆• = − 1

12
(3.53)
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These results inserted into (3.40) give the transition amplitude at the
two-loop approximation. The integrals needed for computing the various
Feynman diagrams are evaluated using mode regularization, namely first
they are computed at finite M (and thus without ambiguities) and then
the M → ∞ limit is taken. We first list them here, and then explain in
the next section how the computations in mode regularization are most
easily performed:

I1 = + =

∫ 0
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dτ τ (•∆• + ••∆)|τ = 0 (3.44)
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dτ τ2 (•∆• + ••∆)|τ = −1
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(3.48)
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∫ 0
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dτ ∆|τ = −1
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(3.49)
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∫ 0
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dτ τ •∆|τ =

1

12
(3.50)

I8 = =

∫ 0

−1
dτ •∆|τ = 0 (3.51)

I9 = + =

∫ 0

−1

∫ 0

−1
dτ dσ ∆ (•∆•2 − ••∆2) =

1

4
(3.52)

I10 = =

∫ 0

−1

∫ 0

−1
dτ dσ •∆ •∆• ∆• = − 1

12
(3.53)

Thus

⟨x0|e
−βĤ |x0⟩ =

1

(4πT )
D
2

[
1 −

TR(x0)

12
+ O(T 2)

]



Detailed discussions on path integral technicalities can be found in the book

F.B. and Peter van Nieuwenhuizen,
“Path Integrals and Anomalies in Curved Space" (CUP, 2006)

See also a forthcoming book

F.B. and Christian Schubert,
“Worldline Path Integrals and Quantum Field Theory" (CUP, expected 2025)



Conclusions

• Systematized old results in QG and computed the gauge
invariant coefficients up to a3 in arbitrary dimensions:
characterization of QG at 1-loop

• Studied graviton in first quantization with the N = 4 particle

• Other applications of the N = 4 spinning particle?

• Other interesting BRST particle models?




