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 The history of Astronomy, Cosmology 
and Gravity is a history of tensions 
between theoretical predictions and 
observations 

 

 
  Astrophysical cosmology has 

become a precision science with an 
incredibly  huge amount of data   

 
 New Tensions appear.  

  Are we approaching New Physics?  
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 Aristotle - 350 BC 

 According to Aristotle heavier bodies fall faster. 

 Bodies fall in order to com back to thei “initial state”.  

E.N.Saridakis – ShanghaiTech, July 2024 



4 4 4 4 

Brahe, Kepler- 1600  
 Heliocentrism, elliptical Orbits 

E.N.Saridakis – ShanghaiTech, July 2024 



5 5 5 5 

Galileo - 1600  
 Bodies fall with the same speed, independently from their weight.  
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Newton - 1700  
 Law of Universal Gravitation:  

     All bodies (either apples or planets) attract mutually.  

     First time that gravity is related to astronomy  
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 Mercury periliheimum - 1859 

• The true orbits of planets, even if seen from the SUN 

are not ellipses. They are rather curves of this type: 

For the planet Mercury it is 

This angle is the 

perihelion advance, 

predicted by G.R. 
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Michelson–Morley experiment - 1887 
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General Relativity 

 Einstein 1915: General Relativity:  

 

 
 

   energy-momentum source of spacetime Curvature 
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Modified Gravity before General Relativity 

 Modifications to Newton's Law  

 Inverse Cube Law.  

 Extended Inverse-Square Law (Simon Newcomb -1880’s)  

 Lord Kelvin - theory of everything (end of 19th century) 

 Hendrik Lorentz: gravity on the basis of his ether theory 
and Maxwell's equations. (1900)  

 Nordström's theory of gravitation (1912 and 1913)  

 Einstein's scalar theory of gravity (1913)  
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Summary of 20th century Observations 

The Universe history: 

11 
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Standard Model of Cosmology 
 
ΛCDM Paradigm + Inflation 
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  Describes the thermal history of the Universe at the background level 

  Epochs of inflation, radiation, matter, late-time acceleration 

 

 

       
 

ΛCDM concordance model is almost perfect! 
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Cosmology-background 

 Homogeneity and isotropy: 

 

 Background evolution (Friedmann equations) in flat space 

 

 

 

     (the effective DE sector can be either Λ or any possible modification) 

 

 One must obtain a H(z) and Ωm(z) and wDE(z) in agreement with 
observations (SNIa, BAO, CMB shift parameter, H(z) etc) 
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Cosmology-perturbations 

 Perturbation evolution:                                       where  

    where                 is the effective Newton’s constant, given by   

 

 

 under the scalar metric perturbation 

 

 Hence: 

 

     with                        the growth rate, with                          and 

 

 One can define the observable: 
 

     with                      the z-dependent rms fluctuations of the linear density field within spheres of     

     radius                        , and σ8 its value today. 

 

 

 

E.N.Saridakis – ShanghaiTech, July 2024 



E.N.Saridakis – ShanghaiTech, July 2024 



16 

Cosmology in the 21st century 
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Issues of ΛCDM Paradigm 
 1) General Relativity is non-renormalizable. It cannot get quantized. 

      2) The cosmological-constant problem.  

      3) How to describe primordial universe (inflation) 

      4) Physics of Dark Matter   

      5) A huge amount of accumulating data suggest possible tensions:  

          H0, fσ8 

[L. Perivolaropoulos , F. Scara,New Astron.Rev (2022), 2105.05208 [astro-ph.CO]] 
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Can General Relativity be quantized? 
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COSMOLOGICAL CONSTANT  

PROBLEM 
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 H0 tension 
 Tension (5σ!) between the data (direct measurements) and Planck/ΛCDM 

(indirect measurements). The data indicate a lack of “gravitational power”. 

 

 

 

 

[Riess et al, Astrophys.J 826]  

[Abdalla et al, JHEAp (2022)]  
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 H0 tension 
 Tension between the data (direct measurements) and Planck/ΛCDM (indirect 

measurements). This tension could be due to systematics.  

 If not systematics then we may need changes in ΛCDM in early or late time 
behavior. 5σ seems to be very serious! 

 

 

 

 

 

 

 

 
 Change early or late Universe physics. Higher number of effective relativistic 

species, dynamical dark energy, non-zero curvature, etc.  

 The data indicate a lack of “gravitational power”. Modified Gravity.  
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S8 Tension  
 Tension between direct data and Planck/ΛCDM estimation. The data indicate 

less matter clustering in structures at intermediate-small cosmological scales. 
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S8 Tension  
 

 Model Dependence: Distance to 
galaxies is not measured directly, so a 
cosmological model is assumed in 
order to infer distances (ΛCDM with 
different parameters). 

 

 Double counting: Some data points 
correspond to the same sample of 
galaxies analyzed by different 
groups/methods etc.                                                            

   [Kazantzidis, Perivolaropoulos, PRD97]  
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Tension2 – fσ8 

 Tension between the data and Planck/ΛCDM.  

 This tension could be due to systematics.  

 

 

 If not systematics, the data less matter clustering in structures at 
intermediate-small cosmological scales (expressed as smaller Ωm at z<0.6, 
or smaller σ8, or wDE<-1).  

 

 It could be reconciled by a mechanism that reduces the rate of clustering 
between recombination and today: Hot Dark Matter, Dark Matter that 
clusters differently at small scales, or Modified Gravity.  
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Possible Solutions of H0 and S8 tensions 



Possible Solutions of H0 and S8 tensions 
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[Abdalla et al, JHEAp (2022)]  
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Efficient model independent requirements 

to solve the tensions 
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Efficient model independent requirements 

to solve the tensions 
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          General Relativity 
Assumptions and Considerations 
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 Diffeomorphism invariance 

 Spacetime dimensionality=4  

 Geometry=Curvature   (connection=Levi Civita) 

 Linear in Ricci scalar 

 Metric compatibility  (zero non-metricity) 

 Minimal matter coupling 

 Equivalence principle 

 Lorentz invariance 

 Locality 
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Standard Model vs General Relativity Lagrangians 
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Modified Gravity 
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Scalar-Tensor Theories 

 Field equations: 
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 For Brans-Dicke: 

 

 PPN parameters: 

 

 Newton’s constant:                             with     
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 Brans-Dicke Cosmology 

 Friedmann-Robertson-Walker metric: 
 

 Friedmann equations: 

 

 

 

 

 Scalar-field equation: 

 

 

 

 Matter equation: 
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 Dark Energy in Brans-Dicke Cosmology 

 Effective Dark Energy sector: 
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Scalar-Tensor Theories 

 Most general 4D scalar-tensor theories having second-order field equations:      
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Horndeski Theories 

 Most general 4D scalar-tensor theories having second-order field equations:      

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   [Nicolis,Rattazzi,Trincherini, PRD 79]  





5

2i

iH LL

),(][2 XKKL 

  ),(][ 333 XGGL

      
 

2

,4444 ),(][ XGRXGGL

            











  2)(3
6

1
),(][

3

,5555 XGGXGGL

   [G. Horndeski, Int. J. Theor. Phys. 10 ]  

 Coincides with Generalized Galileon theories 
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Horndeski Cosmology (background) 

 Field Equations: 

 In flat FRW:  
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Horndeski Cosmology (perturbations) 

 Scalar perturbations: 
 

 No-ghost condition:  

 

 No Laplacian instabilities condition: 
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Beyond Horndeski Theories 

 Beyond Horndeski, free from Ostrogradski instabilities but still propagating 2+1 dof’s:      
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 Primary constraint prevents the propagation of extra degrees of freedom  
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Solving H0 tensions in Horndeski Gravity  

[M. Petronikolou, S. Basilakos, E.N.Saridakis, PRD 106] 
E.N.Saridakis – ShanghaiTech, July 2024 



Solving H0 tensions in Horndeski Gravity  

[S. Peirone, G. Benevento, N. Frusciante, S. Tsujikawa, PRD 100] 

[N. Frusciante, S. Peirone, L. Atayde, A. De Felice, PRD 101] 
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Bi-scalar Theories 

 Modified gravity propagating 2+2 dof’s 

 

 For 
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Bi-scalar Theories 

 Modified gravity propagating 2+2 dof’s 

 

 For 
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Solving H0 tensions in Bi-scalar Gravity  

[M. Petronikolou, E.N.Saridakis, Universe 9] 
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Running Vacuum 

 Upgrade the cosmological constant Λ (vacuum energy) to a running vacuum: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

  

   [Basilakos, Polarski, Sola PRD86]     [Sola, Gomez-Valent, Perez  Astrophys. J 836]  
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Solving the tensions in Running Vacuum 

   [J. Sola, A. Gomez-Valent, J. de Cruz Perez, C. MorenoPulido  CQG 37]  
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“Those that do not know geometry are not allowed to enter”.  
                 Front Door of Plato’s Academy 
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Descriptions of Gravity 

 Einstein 1916: General Relativity:  

   energy-momentum source of spacetime Curvature 

   Levi-Civita connection: Zero Torsion 

 

 Einstein 1928: Teleparallel Equivalent of GR: 

    Weitzenbock connection: Zero Curvature 

 

   [Cai, Capozziello, De Laurentis, Saridakis, Rept.Prog.Phys. 79]  
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 Metric-Affine Modified Gravity 
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Curvature and Torsion 
 Vierbeins    : four linearly independent fields in the tangent space 

 

 Connection:  
 

 Curvature tensor: 
 

 Torsion tensor: 
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Curvature and Torsion 
 Vierbeins    : four linearly independent fields in the tangent space 

 

 Connection:  
 

 Curvature tensor: 
 

 Torsion tensor: 
 

 Levi-Civita connection and Contortion tensor: 

     

 

 Curvature and Torsion Scalars: 
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Additional motivation 

 Gauge Principle: global symmetries replaced by 
local ones: 

   The group generators give rise to the compensating 
fields 

   It works perfect for the standard model of strong, 
weak and E/M interactions 

 
 

 Can we apply this to gravity? 

    )1(23 USUSU 
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Additional motivation 

 Formulating the gauge theory of gravity  

    (mainly after 1960): 

 Start from Special Relativity       

      Apply (Weyl-Yang-Mills) gauge principle to its Poincaré-    

      group symmetries 

      Get Poinaré gauge theory: 

      Both curvature and torsion appear as field strengths 
 

 Torsion is the field strength of the translational group 

  (Teleparallel and Einstein-Cartan theories are subcases of Poincaré theory) 
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Additional motivation 

 One could extend the gravity gauge group (SUSY, 
conformal, scale, metric affine transformations) 

   obtaining SUGRA, conformal, Weyl, metric affine     

   gauge theories of gravity 

 

 In all of them torsion is always related to the gauge 
structure. 

 Thus, a possible way towards gravity quantization 
would need to bring torsion into gravity description. 
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 Teleparallel Equivalent of General Relativity (TEGR) 

 Let’s start from the simplest tosion-based gravity formulation, 
namely TEGR: 

 Vierbeins     : four linearly independent fields in the tangent space 

 

 Use curvature-less Weitzenböck connection instead of torsion-less 
Levi-Civita one: 

 Torsion tensor: 
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 Teleparallel Equivalent of General Relativity (TEGR) 

 Let’s start from the simplest tosion-based gravity formulation, 
namely TEGR: 

 Vierbeins     : four linearly independent fields in the tangent space 

 

 Use curvature-less Weitzenböck connection instead of torsion-less 
Levi-Civita one: 

 Torsion tensor: 

 
          

 Lagrangian (imposing coordinate, Lorentz, parity invariance, and up to 2nd order 

in torsion tensor) 
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 f(T) Gravity and f(T) Cosmology 

 f(T) Gravity: Simplest torsion-based modified gravity 

 Generalize T to f(T)   (inspired by f(R)) 

 
 

 Equations of motion: 
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 f(T) Gravity and f(T) Cosmology 

 f(T) Gravity: Simplest torsion-based modified gravity 

 Generalize T to f(T)   (inspired by f(R)) 

 
 

 Equations of motion: 

 
 

 f(T) Cosmology: Apply in FRW geometry: 
 

                                                                                                 (not unique choice) 
 

 Friedmann equations: 
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 f(T) Cosmology: Background 

 Effective Dark Energy sector: 
 

 
 

 

 

 

 

 

 

 Interesting cosmological behavior: Late-time acceleration, Inflation 
etc 
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   [Cai, Capozziello, De Laurentis, Saridakis, Rept.Prog.Phys. 79]  

E.N.Saridakis – ShanghaiTech, July 2024 



64 

 f(T) Cosmology: Background 

 Re-write Firedmann Equation as: 

 
 
 

with                                   and 

 

 

 

                                                        quantifies the deviation from ΛCDM  

                                                            (for f=const. we obtain ΛCDM)                                        
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 f(T) Cosmology: Perturbations 

 For scalar perturbations: 

 
 

 

 

 Obtain Perturbation Equations. 
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[Chen, Dent, Dutta, Saridakis  PRD 83],   

[Dent, Dutta, Saridakis  JCAP 1101] 
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 Viable f(T) models 

 1) Power-law model (f1CDM) 

 

 

 

 2) The Linder model (f2CDM) 

 

 

 
 

 3) The exponential model (f3CDM) 

 

 

 

 

 

 

 

 

 

 

  

 

[Nesseris, Basilakos, Saridakis, Perivolaropoulos, PRD 88] E.N.Saridakis – ShanghaiTech, July 2024 



Efficient model independent requirements 

to solve the tensions 
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Solving H0 and S8 tensions in f(T) Gravity  

[S-F Yan, P. Zhang, J_W Chen, X_Z Zhang, Y-F Cai, E.N. Saridakis, PRD 101] 
E.N.Saridakis – ShanghaiTech, July 2024 



Solving H0 and S8 tensions in f(T) Gravity  

[S-F Yan, P. Zhang, J_W Chen, X_Z Zhang, Y-F Cai, E.N. Saridakis, PRD 101] 
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Solving H0 and S8 tensions in f(T) Gravity  

[S-F Yan, P. Zhang, J_W Chen, X_Z Zhang, Y-F Cai, E.N. Saridakis, PRD 101] 
E.N.Saridakis – ShanghaiTech, July 2024 



Solving H0 and S8 tensions in f(T) Gravity  

[S-F Yan, P. Zhang, J-W Chen, X_Z Zhang, Y-F Cai, E.N. Saridakis, PRD 101] 

[J-W Chen,  W. Luo, Y-F Cai, E.N. Saridakis, PRD 102] 

[S. Basilakos, S. Nesseris, F. Anagnostopoulos, E.N.Saridakis, JCAP 2019] 
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 Viable f(T) models 

 

 

 

 

 

 

 

 

 

 
 In f(T) gravity we can indeed obtain                <1  for z<2, without 

affecting the background evolution. 

 fσ8 tension may be alleviated. 
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f1CDM 

 

 

 

 

 

 

 

 

 

  

 

f2CDM 

 

 

 

 

 

 

 

 

 

  

 

f3CDM 
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In other modified gravities: Not possible 

 This behavior is not possible in other modified gravities. e.g.: 

 

 

 

 

 

 
 

                >1 for all models that do not have ghosts (i.e. with fR,fRR>0). 

 

 On the contrary, f(T) gravity has second-order field equations and moreover 
perturbations are stable in a large part of the parameter phase. 
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f(Q) gravity 
 

E.N.Saridakis – ShanghaiTech, July 2024 



f(Q) gravity 

E.N.Saridakis – ShanghaiTech, July 2024 



f(Q) gravity 

E.N.Saridakis – ShanghaiTech, July 2024 
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Conclusions 

 i) Astrophysics and Cosmology have become precision sciences. 
 

 ii) A huge amount of accumulating data suggest possible tensions with 
theoretical predictions of ΛCDM paradigm. 
 

 iii) New Physics or paradigm shift may be the way out 
 

 iv) We can modify the Universe content, the interactions, or/and the 
gravitational theory. Historically, modified gravity has ben proven to be the 
solution quite often. 
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