UV-extending Higgs inflation in Einstein-Cartan Gravity

Based on: M. He (IBS-CTPU), KK, K. Mukaida (KEK), JHEP01 (2024) 014 arXiv: 2308.14398 [hep-ph]; see also PRL 132 (2024) 191501, arXiv: 2308.15420 [hep-ph]

國科大杭州高等研究院

Kohei Kamada (Hangzhou Institute for Advanced Study, UCAS) Quantum Gravity and Cosmology 2024 Shanghai Tech University, 3/7/2024

1. Introduction — Higgs inflation — 2. Problem in Higgs inflation and its UV extension 4. UV extension of the Higgs inflation in EC formalism 5. Summary

3. Higgs inflation in Palatini and Einstein-Cartan formalism

Introduction — Higgs inflation —

- Origin of the large-scale structure of the present Universe.

- Accelerating expansion of the Universe in the primordial Universe. - Solution to the horizon, flatness, and monopole problems.

- Solution to the horizon, flatness, and monopole problems.
- Origin of the large-scale structure of the present Universe.

- Accelerating expansion of the Universe in the primordial Universe.

- It is often the case to introduce a scalar field whose potential energy drives inflation.

- Solution to the horizon, flatness, and monopole problems.
- Origin of the large-scale structure of the present Universe.

- Accelerating expansion of the Universe in the primordial Universe.

- It is often the case to introduce a scalar field whose potential energy drives inflation.

- What is "Inflaton"?

Requirement: Flat potential, Graceful exit,…

- Solution to the horizon, flatness, and monopole problems.
- Origin of the large-scale structure of the present Universe.

- Accelerating expansion of the Universe in the primordial Universe.

- It is often the case to introduce a scalar field whose potential energy drives inflation.

- What is "Inflaton"?

Requirement: Flat potential, Graceful exit,… Can the SM Higgs be inflaton?

Can Higgs potential drive accelerating expansion of the Universe (2)?

$$S = \int d^4x \sqrt{-g} \left| \frac{M_{\rm pl}^2}{2} R - |D_{\mu}\mathcal{H}|^2 - \lambda(|\mathcal{H}|^2 - v^2)^2 \right|$$

New inflation is impossible \bigcirc , because the slow-roll parameter $\eta \equiv M_{\rm pl}^2 \frac{V''}{V}$ cannot be small.

Can Higgs potential drive accelerating expansion of the Universe (2)?

$$S = \int d^4x \sqrt{-g} \left| \frac{M_{\rm pl}^2}{2} R - |D_{\mu}\mathcal{H}|^2 - \lambda(|\mathcal{H}|^2 - v^2)^2 \right|$$

Chaotic inflation is possible for $|h| > M_{\rm pl}$

Can Higgs potential drive accelerating expansion of the Universe (2)?

$$S = \int d^4x \sqrt{-g} \left| \frac{M_{\rm pl}^2}{2} R - |D_{\mu}\mathcal{H}|^2 - \lambda(|\mathcal{H}|^2 - v^2)^2 \right|$$

Chaotic inflation is possible for $|h| > M_{\rm pl}$ is But the density perturbation generated in this case, $\mathcal{P}_{\zeta} \sim 10^3 \lambda$ is much larger than the one in the real Universe, $\mathcal{P}_{\zeta}^{\rm obs} \simeq 2.18 \times 10^{-9}$ for $\lambda_{\rm Higgs} \sim \mathcal{O}(1)$ is

(Non-minimal) Higgs Inflation

$$\mathcal{H} = (0, h/\sqrt{2})$$

$$\mathcal{S} = \int d^4x \sqrt{-g_{\rm E}} \left[\frac{M_{\rm pl}^2}{2} R - \frac{1}{2} \right]$$

$$\begin{aligned} & \text{liggs Inflation (in the metric formalism)} \\ & \text{(95 Cerventas-Cota & Dehnen, '08 Bezrukov & Shaposl} \\ & \mathcal{S} = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\text{pl}}^2}{2} + \xi |\mathcal{H}|^2 \right) R - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4 \right] & \text{w/} \quad \xi \gg 1 \\ & \text{Conformal transformation} \\ & \mathcal{H} = (0, h/\sqrt{2}) & \text{Conformal transformation} \\ & g_{\mu\nu}^{\text{E}} = \Omega^2 g_{\mu\nu}, \quad \Omega^2 = 1 + \frac{\xi h^2}{M_{\text{pl}}^2} \end{aligned}$$

$$\frac{1}{2} \frac{\Omega^2 + 6\xi h^2 / M_{\rm pl}^2}{\Omega^4} (\partial_{\mu} h)^2 - \frac{\lambda}{4\Omega(h)^4} h^4 \bigg]$$

(Non-minimal) Higgs Inflation

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2}{2} \right) \right]$$

 $\mathcal{H} = (0, h/\sqrt{2})$

$$\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2}{-1}}$$

(in the metric formalism)
('95 Cerventas-Cota & Dehnen, '08 Bezrukov & Shaposl

$$+\xi|\mathcal{H}|^{2}$$
) $R - |D_{\mu}\mathcal{H}|^{2} - \lambda|\mathcal{H}|^{4}$ w/ $\xi \gg 1$
Conformal transformation

$$g_{\mu\nu}^{\rm E} = \Omega^2 g_{\mu\nu}, \quad \Omega^2 = 1 + \frac{\xi h^2}{M_{\rm pl}^2}$$

-

$$\left| \frac{1}{2} (\partial_{\mu} \chi)^2 - \frac{\lambda}{4\Omega(\chi)^4} h(\chi)^4 \right|$$

$$\frac{+6\xi^2 h^2/M_{\rm pl}^2}{\Omega^4}$$

(Non-minimal) Higgs Inflation (in the metric formalism) ('95 Cerventas-Cota & Dehnen, '08 Bezrukov & Shaposhnikov) $\mathcal{S} = \int d^4 x \sqrt{-g} \left| \left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) R - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4 \right|$ w/ $\xi \gg 1$

Fig. 8. Marginalized joint 68 % and 95 % CL regions for n_s and r at $k = 0.002 \,\mathrm{Mpc}^{-1}$ from *Planck* alone and in combination with BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions assume $dn_s/d \ln k = 0$.

 $\xi/\lambda^{1/2} \simeq 4 \times 10^4 \gg 1$ $n_S \simeq 0.97$ $r \simeq 0.0033$

Simplest model of inflation driven by the SM Higgs, which fits the CMB data very well .

Problems in Higgs inflation and its UV extension

Unitarity bound in Higgs inflation 🧐 Cutoff scale of the theory (at the vacuum): $\Lambda \simeq \frac{M_{\rm pl}}{\xi}$ $\mathcal{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} \pi_2 + i\pi_3 \\ h + \pi_0 + i\pi_1 \end{pmatrix}$

('09 Barbon&Espinosa, '10 Burgess, Lee, &Trott, '10 Hertzberg)

Jordan frame: $\xi |\mathcal{H}|^2 R \ni \frac{\xi}{M_{\rm pl}} \pi_i^2 \partial^2 \gamma$

Einstein frame:

conformal

trans.

 π_i

$$\frac{3}{2} \frac{\xi^2}{M_{\rm pl}^2} \pi_i^2 (\partial \pi_j)^2$$

Unitarity bound in Higgs inflation 🧐 Cutoff scale of the theory (at the vacuum): $\Lambda \simeq \frac{M_{\rm pl}}{\xi}$

('09 Barbon&Espinosa, '10 Burgess, Lee, &Trott, '10 Hertzberg)

Jordan frame: $\xi |\mathcal{H}|^2 R \ni \frac{\xi}{M_{\rm pl}} \pi_i^2 \partial^2 \gamma$

Typical energy scale during inflation : Is the predictions in Higgs inflation

Einstein frame:

trans.

$$\mathcal{H} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \pi_2 + \\ h + \pi_0 \end{array} \right)$$

$$\frac{3}{2} \frac{\xi^2}{M_{\rm pl}^2} \pi_i^2 (\partial \pi_j)^2$$

$$\rho_{\rm inf}^{1/4} \simeq \frac{\lambda^{1/4} M_{\rm pl}}{\sqrt{\xi}} \gg \Lambda \simeq \frac{M_{\rm pl}}{\xi}$$

unreliable?

Unitarity bound in Higgs inflation 🧐 Cutoff scale of the theory (at the vacuum): $\Lambda \simeq \frac{M_{\rm pl}}{\xi}$

('09 Barbon&Espinosa, '10 Burgess, Lee, &Trott, '10 Hertzberg)

Jordan frame: $\xi |\mathcal{H}|^2 R \ni \frac{\xi}{M_{\rm pl}} \pi_i^2 \partial^2 \gamma$

Typical energy scale during inflation : Is the predictions in Higgs inflation Perhaps OK during inflation, since the cutoff scale during inflation is larger (?).

Einstein frame:

conformal

trans.

 $\mathcal{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} \pi_2 + \mathrm{i}\pi_3 \\ h + \pi_0 + \mathrm{i}\pi_1 \end{pmatrix}$

$$\frac{3}{2} \frac{\xi^2}{M_{\rm pl}^2} \pi_i^2 (\partial \pi_j)^2$$

$$\rho_{\rm inf}^{1/4} \simeq \frac{\lambda^{1/4} M_{\rm pl}}{\sqrt{\xi}} \gg \Lambda \simeq \frac{M_{\rm pl}}{\xi}$$
unreliable?

('11 Bezrukov, Gorbunov, & Shaposhnikov)

Unitarity violation in this Higgs Inflation (2)

Longitudinal mode of the weak gauge bosons (or the NG mode) receives mass with spiky feature at the reheating/oscillation phase, ('15 DeCross, Kaiser, Prabhu, Prescod-Weistein, Sfakianakis, '16 Ema, Jinno, Mukaida, Nakayama)

$$-g_{\rm E}^{\mu\nu}\frac{1}{\Omega^2}\left(1+\frac{12\xi^2}{\Omega^2}\frac{|\mathcal{H}|^2}{M_{\rm pl}^2}\right)\partial_{\mu}\mathcal{H}\partial_{\nu}\mathcal{H}^{\dagger}\qquad \Omega^2=1+\frac{2\xi|\mathcal{H}|^2}{M_{\rm pl}^2}$$

$$m_{\text{eff}}^2 \ni \frac{\xi(1+6\xi)h^2}{M_{\text{pl}}^2 + \xi(1+6\xi)h^2}$$

Unitarity violation in this Higgs Inflation (2)

Longitudinal mode of the weak gauge bosons (or the NG mode) receives mass with spiky feature at the reheating/oscillation phase, ('15 DeCross, Kaiser, Prabhu, Prescod-Weistein, Sfakianakis, '16 Ema, Jinno, Mukaida, Nakayama)

('11 Bezrukov, Gorbunov, & Shaposhnikov)

which leads to the violent excitation of gauge boson with $k \simeq \sqrt{\lambda} M_{\rm pl}$ => Unitarity violation 🗳

UV-extension by R^2 term Once we add the R^2 term in the theory, $S = \int d^4x \sqrt{-g} \left| \left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) R \right|$

$$R + \frac{M_{\rm pl}^2}{12M^2} R^2 - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4$$

cutoff scale is pushed up to the Planck scale. (17 Ema, 18 Gorbunov&Tokareva/ 18 He, Jinno, KK+)

UV-extension by R^2 term Once we add the R^2 term in the theory, $\mathcal{S} = \int d^4x \sqrt{-g} \left| \left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) R \right|$

cutoff scale is pushed up to the Planck scale. (17 Ema, 18 Gorbunov&Tokareva/ 18 He, Jinno, KK+)

 R^2 term gives rise to a new scalar degree of freedom, scalaron, with $m_{\sigma} = M$ and the inflation becomes a two-field model (in the Einstein frame).

Cosmological predictions are unchanged.

$$R + rac{M_{
m pl}^2}{12M^2} R^2 - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4$$

UV-extension by R^2 term Once we add the R^2 term in the theory, $\mathcal{S} = \int d^4 x \sqrt{-g} \left| \left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) R \right|$

cutoff scale is pushed up to the Planck scale. (17 Ema, '18 Gorbunov&Tokareva/ '18 He, Jinno, KK+) Indeed, this is natural appearance from the quantum correction of the scalar sector at the leading order in the large-N analysis

$$R + rac{M_{
m pl}^2}{12M^2} R^2 - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4$$

('15 Salvio & Mazumdar, '19 Ema, '20 Ema, Mukaida, van de Vis)

 $g_{\mu\nu} = \frac{\Phi^2}{6M_{\rm pl}^2} \tilde{g}_{\mu\nu}, \quad \mathrm{d}$

$$\operatorname{let}[\tilde{g}_{\mu\nu}] = -1$$

 $\alpha \tilde{R}^2 \quad (\alpha \sim N\xi)$

$$S = \int d^4 x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) R + \frac{M_{\rm pl}^2}{12M^2} R^2 - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4 \right]$$

Indeed, this is natural appearance from the quantum correction of the scalar sector at the leading order in the large-N analysis

where the of the dominant one-loop correction in the theory with contormal mode.

cutoff scale is pushed up to the Planck scale. (17 Ema, 18 Gorbunov&Tokareva/ 18 He, Jinno, KK+)

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ UV-extension by R^2 term Once we add the R^2 term in the theory, $S = \int d^4x \sqrt{-g} \left| \left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) R \right|$ cutoff scale is pushed up to the Planck scale. (17 Ema, '18 Gorbunov&Tokareva/ '18 He, Jinno, KK+) Indeed, this is natural appearance from the quantum correction of the scalar sector at the leading order in the large-N analysis ('15 Salvio & Mazumdar, '19 Ema, '20 Ema, Mukaida, van de Vis) Practically, an auxiliary field γ in the conformal factor Ω becomes dynamical.

$$S = \int d^4x \left[\frac{\Phi_{\rm E}^2}{12} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \left(\partial_\mu \Phi_{\rm E} \partial_\nu \Phi_{\rm E} - \frac{\Phi_{\rm E}^2 / \Omega^2}{6M_{\rm pl}^2} \partial_\mu \phi_i \partial_\nu \phi^i \right) - \left(\frac{\Phi_{\rm E}^2 / \Omega^2}{6M_{\rm pl}^2} \right)^2 V(\phi) - \frac{\alpha \gamma^2}{6M_{\rm pl}^2} - \frac{\Phi_{\rm E}^2}{8} \tilde{g}^{\mu\nu} \partial_\mu \ln |\Omega^2| \partial_\nu \ln |\Omega^2| \right] , \qquad \Omega^2 \equiv 1 + 12$$

$$R + rac{M_{
m pl}^2}{12M^2} R^2 - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4$$

$$S = \int d^4 x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) R + \frac{M_{\rm pl}^2}{12M^2} R^2 - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4 \right]$$

Indeed, this is natural appearance from the quantum correction of the scalar sector at the leading order in the large-N analysis

where the of the dominant one-loop correction in the theory with contormal mode.

cutoff scale is pushed up to the Planck scale. (17 Ema, 18 Gorbunov&Tokareva/ 18 He, Jinno, KK+)

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) \right]$$

('15 Salvio & Mazumdar, '19 Ema, '20 Ema, Mukaida, van de Vis)

 $R |H|^2, R^2$ NLSM (2.10) LSN M_P / ξ

where the scalaron is non-perturbatively induced from the resummation of the dominant one-loop correction in the theory with conformal mode.

cutoff sca Indeed, th of the sca

cutoff sca

Indeed, th

of the sca

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) \right]$$

('15 Salvio & Mazumdar, '19 Ema, '20 Ema, Mukaida, van de Vis)

 $R |H|^2, R^2$ $NLSM (2.10) \qquad L_2$ M_P / ξ

where the scalaron is non-perturbatively induced from the resummation of the dominant one-loop correction in the theory with conformal mode. But fine-tuning is needed for small Higgs mass and cosmological constant…

Higgs inflation in Palatini and Einstein-Cartan formalism

Higgs inflation with R^2 UV extension is reasonable and free from Unitarity problem. But it still has a naturalness problem. How is the situation in its variants \bigcirc ?

Higgs inflation in Palatini formalism We studied Higgs inflation in metric formalism => connection = Levi-Civita.

 $\bar{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} \equiv \frac{1}{2} g^{\rho\sigma} (\partial_{\mu}g_{\nu\sigma} + \partial_{\nu}g_{\sigma\mu} - \partial_{\rho}g_{\mu\nu})$

Higgs inflation in Palatini formalism We studied Higgs inflation in metric formalism => connection = Levi-Civita. $\bar{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} \equiv \frac{1}{2} g^{\rho\sigma} (\partial_{\mu}g_{\nu\sigma} + \partial_{\nu}g_{\sigma\mu} - \partial_{\rho}g_{\mu\nu})$

How about in the Palatini formalism? GR is reproduced by solving the EOM with E-H action.

 $\bar{\Gamma}^{
ho}_{\mu
u}$ and $g_{\mu
u}$ are a priori independent while keeping torsionless.

Higgs inflation in Palatini formalism We studied Higgs inflation in metric formalism => connection = Levi-Civita. $\bar{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} \equiv \frac{1}{2}g^{\rho\sigma}(\partial_{\mu}g_{\nu\sigma} + \partial_{\nu}g_{\sigma\mu} - \partial_{\rho}g_{\mu\nu})$

How about in the Palatini formalism? GR is reproduced by solving the EOM with E-H action. $S = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) \frac{R(g,\bar{\Gamma}) - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4}{\frac{1}{1}} \right] \xrightarrow{\text{conformal}}_{\text{trans}}$ Fits CMB data well with $\xi \simeq 10^{10} \lambda$ $n_S \simeq 0.97 \quad r \simeq 10^{-14}$

 $\Gamma^{\rho}_{\mu\nu}$ and $g_{\mu\nu}$ are a priori independent while keeping torsionless.

Unitarity issues of Higgs inflation in Palatini formalism => Much different from that in metric formalism

- Cutoff scale of the theory (at the vacuum): $\Lambda \simeq \frac{M_{\rm pl}}{\sqrt{\xi}} \gg \frac{M_{\rm pl}}{\xi}$ (11 Bauer & Demir) - Violent preheating of the NG mode/gauge bosons is absent and no unitarity problem during inflation and reheating. (19 Rubio & Tomberg) - Introduction of R^2 term does not induce scalaron
- but leads to $P(h, (\partial h)^2)$ theory. (18 Eckell+)

- Extended theory with conformal mode does not lead to UV-extension.

Unitarity issues of Higgs inflation in Palatini formalism => Much different from that in metric formalism

- Cutoff scale of the theory (at the vacuum): $\Lambda \simeq \frac{M_{\rm pl}}{\sqrt{\xi}} \gg \frac{M_{\rm pl}}{\xi}$ (11 Bauer & Demir) - Violent preheating of the NG mode/gauge bosons is absent and no unitarity problem during inflation and reheating. (19 Rubio & Tomberg) - Introduction of R^2 term does not induce scalaron
- but leads to $P(h, (\partial h)^2)$ theory. (18 Eckell+)

- Extended theory with conformal mode does not lead to UV-extension. ('21 Mikura & Tada) How can we understand these differences? Are there any "natural" models of Higgs inflation?

Einstein-Cartan connects metric to Palatini $\Gamma^{\rho}_{\mu\nu}$ and $g_{\mu\nu}$ are a priori independent with existence of torsion. GR is reproduced by solving the EOM with E-H action. $T^{\rho}_{\mu\nu} \equiv \bar{\Gamma}^{\rho}_{\mu\nu} - \bar{\Gamma}^{\rho}_{\nu\mu}$

Einstein-Cartan connects metric to Palatini $\bar{\Gamma}^{\rho}_{\mu\nu}$ and $g_{\mu\nu}$ are a priori independent with existence of torsion. GR is reproduced by solving the EOM with E-H action. $T^{\rho}_{\mu\nu} \equiv \bar{\Gamma}^{\rho}_{\mu\nu} - \bar{\Gamma}^{\rho}_{\nu\mu}$ Higgs inflation in E-C gravity with Nieh-Yan term is a generalization of metric and Palatini Higgs inflation. ('20 Shaposhnikov, Shkerin, TImiryasov, & Zell) $\mathcal{S} = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2}{2} + \xi |\mathcal{H}|^2 \right) R(g,\bar{\Gamma}) - |D_{\mu}\mathcal{H}|^2 - \lambda |\mathcal{H}|^4 \right] - \frac{\xi\eta}{4} \int d^4x \phi^2 \partial_{\mu} \left(\sqrt{-g} E^{\mu\nu\rho\sigma} T_{\nu\rho\sigma} \right)$

Integrating out torsion and other non-dynamical DoF

- $\xi_{\eta} = \xi$ -> metric Higgs inflation
 - $\xi_{\eta} = 0$ -> Palatini Higgs inflation

Einstein-Cartan connects metric to Palatini

 $\bar{\Gamma}^{
ho}_{\mu
u}$ and $g_{\mu\nu}$ are a priori independent with existence of torsion. GR is r In E-C Higgs inflation, - How cutoff changes from metric to Palatini limit? Higgs - How quantum correction induces scalaron? metric - How R^2 term UV-extends the theory? - Are there a "natural" value of $r \equiv \xi_{\eta}/\xi$? $\mathcal{S} =$

Integrating out torsion and other non-dynamical DoF

 $\bar{\Gamma}^{\rho}_{\mu\nu} - \bar{\Gamma}^{\rho}_{\nu\mu}$

ization of

 $^{\rho\sigma}T_{\nu\rho\sigma})$

- $\[\] \xi_{\eta} = \xi \] -> metric Higgs inflation \]$
 - $\xi_{\eta} = 0$ -> Palatini Higgs inflation

Unitarity analysis in Einstein-Cartan Higgs inflation Extended theory with conformal mode

 $\Box \Phi_1$

$$A_{R} \equiv -\frac{2}{3} \left(\tilde{T}^{2} - \frac{1}{16} \tilde{S}^{2} \right) + 2 \tilde{\nabla}_{\mu} \tilde{T}^{\mu} + 4 \tilde{T}^{\mu} \partial_{\mu} \ln \left| \Phi_{J} \right| -$$

('23 He, KK, Mukaida)

$$T_{\mu} \equiv T^{\alpha}_{\ \mu\alpha} ,$$
$$S^{\beta} \equiv E^{\mu\nu\alpha\beta} T_{\mu\nu\alpha} ,$$

,
$$A_{\rm N-Y} \equiv \frac{1}{2} \tilde{\nabla}_{\mu} \tilde{S}^{\mu} + \tilde{S}^{\mu} \partial_{\mu} \ln |\Phi_{\rm J}|$$

Unitarity analysis in Einstein-Cartan Higgs inflation Extended theory with conformal mode $S = \int d^4 x \left[\frac{\Phi_{\rm E}^2}{12} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \left(\partial_\mu \Phi \right) \right]$ $-r^2 \frac{\Phi_{\rm E}^2}{8} \tilde{g}^{\mu\nu} \partial_{\mu} \ln |\Omega_0^2|$

('23 He, KK, Mukaida)

 $\xi \frac{\phi^2}{\Phi_{ ext{ }T}^2}$

$$\Phi_{\rm E} \partial_{\nu} \Phi_{\rm E} - \frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2} \partial_{\mu} \phi_i \partial_{\nu} \phi^i \bigg) - \left(\frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2}\right)^2 V(\phi)$$

$$\frac{\partial_{\mu} \ln |\Omega_0^2|}{\partial_{\nu} \ln |\Omega_0^2|} \bigg] \cdot \Phi_{\rm E} \equiv \Omega_0 \Phi_{\rm J} , \quad \Omega_0^2 \equiv 1 + 6$$

Unitarity analysis in Einstein-Cartan Higgs inflation Extended theory with conformal mode $S = \int d^4 x \left[\frac{\Phi_{\rm E}^2}{12} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \left(\partial_\mu \Phi_{\rm I} \right) \right]$ $-r^2 \frac{\Phi_{\rm E}^2}{8} \tilde{g}^{\mu\nu} \partial_\mu \ln |\Omega_0^2|$ w/ field space metric $ds^{2} = -d\Phi_{E}^{2} + \frac{1}{6} \frac{\Phi_{E}^{2}}{M_{Pl}^{2} + \xi \phi^{2}} \left(\delta_{ij}\right)$

('23 He, KK, Mukaida)

$$\Phi_{\rm E} \partial_{\nu} \Phi_{\rm E} - \frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2} \partial_{\mu} \phi_i \partial_{\nu} \phi^i \bigg) - \left(\frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2}\right)^2 V(\phi)$$

$$\frac{2}{6} \left| \partial_{\nu} \ln \left| \Omega_0^2 \right| \right| \cdot \Phi_{\rm E} \equiv \Omega_0 \Phi_{\rm J} , \quad \Omega_0^2 \equiv 1 + 6\xi \frac{\tilde{\phi}^2}{\Phi_{\rm I}^2}$$

$$_{j} + \frac{6r^{2}\xi^{2}}{M_{\rm Pl}^{2} + \xi\phi^{2}}\phi_{i}\phi_{j} d\phi^{i}d\phi^{j}$$

Unitarity analysis in Einstein-Cartan Higgs inflation Extended theory with conformal mode $S = \int \mathrm{d}^4 x \left[\frac{\Phi_{\rm E}^2}{12} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \right] \partial_\mu \Phi_{\rm H}$ $-r^2 \frac{\Phi_{\rm E}^2}{{}_{\rm R}} \tilde{g}^{\mu\nu} \partial_\mu \ln |\Omega_0^2|$ w/ field space metric $ds^{2} = -d\Phi_{E}^{2} + \frac{1}{6} \frac{\Phi_{E}^{2}}{M_{Pl}^{2} + \xi \phi^{2}} \left(\delta_{ij}\right)$

The 2-to-2 scattering amplitude can be evaluated as $\mathcal{M}_{IJ\leftrightarrow KL} = \frac{2}{3} \left[s_{IJ} \bar{R}_{I(KL)J} + s_{IK} \bar{R}_{I(JL)K} + s_{IL} \bar{R}_{I(JK)L} \right],$

('23 He, KK, Mukaida)

$$E \partial_{\nu} \Phi_{\rm E} - \frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2} \partial_{\mu} \phi_i \partial_{\nu} \phi^i - \left(\frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2}\right)^2 V(\phi)$$

$$\frac{\partial_0^2 |\partial_{\nu} \ln |\Omega_0^2|}{\partial_0^2} \cdot \Phi_{\rm E} \equiv \Omega_0 \Phi_{\rm J}, \quad \Omega_0^2 \equiv 1 + 6\xi$$

$$_{j} + \frac{6r^{2}\xi^{2}}{M_{\rm Pl}^{2} + \xi\phi^{2}}\phi_{i}\phi_{j} d\phi^{i}d\phi^{j}$$

('16 Alonso+; '19 Nagai+; 21 Cohen+,...)

>
$$\Lambda \simeq |\bar{R}|^{-1/2}$$

Unitarity analysis in Einstein-Cartan Higgs inflation Extended theory with conformal mode $S = \int \mathrm{d}^4 x \left[\frac{\Phi_{\rm E}^2}{12} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \right] \partial_\mu \Phi_{\rm H}$ $-r^2 \frac{\Phi_{\rm E}^2}{{}_{\rm R}} \tilde{g}^{\mu\nu} \partial_\mu \ln |\Omega_0^2|$ w/ field space metric $ds^{2} = -d\Phi_{E}^{2} + \frac{1}{6} \frac{\Phi_{E}^{2}}{M_{Pl}^{2} + \xi \phi^{2}} \left(\delta_{ij}\right)$

The 2-to-2 scattering amplitude can be evaluated as $\mathcal{M}_{IJ\leftrightarrow KL} = \frac{2}{3} \left[s_{IJ} \bar{R}_{I(KL)J} + s_{IK} \bar{R}_{I(JL)K} + s_{IL} \bar{R}_{I(JK)L} \right],$ It is frame independent!

('23 He, KK, Mukaida)

$$E \partial_{\nu} \Phi_{\rm E} - \frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2} \partial_{\mu} \phi_i \partial_{\nu} \phi^i - \left(\frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2}\right)^2 V(\phi)$$

$$\frac{\partial_0^2 |\partial_{\nu} \ln |\Omega_0^2|}{\partial_0^2} \cdot \Phi_{\rm E} \equiv \Omega_0 \Phi_{\rm J}, \quad \Omega_0^2 \equiv 1 + 6\xi$$

$$_{j} + \frac{6r^{2}\xi^{2}}{M_{\rm Pl}^{2} + \xi\phi^{2}}\phi_{i}\phi_{j} d\phi^{i}d\phi^{j}$$

('16 Alonso+; '19 Nagai+; 21 Cohen+,...)

>
$$\Lambda \simeq |\bar{R}|^{-1/2}$$

Unitarity analysis in Einstein-Cartan Higgs inflation Extended theory with conformal mode $S = \int \mathrm{d}^4 x \left[\frac{\Phi_{\rm E}^2}{12} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \left(\partial_\mu \Phi_{\rm H} \right) \right]$ $-r^2 \frac{\Phi_{\rm E}^2}{{}_{\rm R}} \tilde{g}^{\mu\nu} \partial_\mu \ln |\Omega_0^2|$ w/ field space metric $ds^{2} = -d\Phi_{E}^{2} + \frac{1}{6} \frac{\Phi_{E}^{2}}{M_{Pl}^{2} + \xi \phi^{2}} \left(\delta_{ij}\right)$

Cutoff scale of (tree-level) E-C Higgs inflation at the vacuum

 $\Lambda_{\rm E-C}^{0} = |R_N|^{-1/2} = \frac{\sqrt{6M_{\rm Pl}}}{\sqrt{1 + 12\xi(1 + 3r^2\xi)}}$

('23 He, KK, Mukaida)

$$E \partial_{\nu} \Phi_{\rm E} - \frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2} \partial_{\mu} \phi_i \partial_{\nu} \phi^i - \left(\frac{\Phi_{\rm E}^2 / \Omega_0^2}{6M_{\rm Pl}^2}\right)^2 V(\phi)$$

$$\frac{\partial_{\mu} \ln |\Omega_0^2|}{\partial_{\nu} \ln |\Omega_0^2|} \cdot \Phi_{\rm E} \equiv \Omega_0 \Phi_{\rm J}, \quad \Omega_0^2 \equiv 1 + 6\xi \frac{\tilde{\phi}^2}{\Phi_{\rm I}^2}$$

$$_{j} + \frac{6r^{2}\xi^{2}}{M_{\rm Pl}^{2} + \xi\phi^{2}}\phi_{i}\phi_{j} d\phi^{i}d\phi^{j}$$

$$\sim \begin{cases} \frac{M_{\rm Pl}}{r\xi} & \text{for } \frac{1}{\sqrt{\xi}} \lesssim r \lesssim 1, \\ \frac{M_{\rm Pl}}{\sqrt{\xi}} & \text{for } 0 \le r \lesssim \frac{1}{\sqrt{\xi}}, \quad <-\text{"Palatini limit"} \end{cases}$$

UV extension of the Higgs inflation in EC formalism

Quantum correction generates scalaron ('23 He, KK, Mukaida)

leading contribution in the large N and ξ :

$\tilde{R} + A_R + rA_{N-Y} \otimes \left(\begin{bmatrix} \pi_i \\ \pi_i \end{bmatrix} \right) \otimes \tilde{R} + A_R + rA_{N-Y} \qquad \Longrightarrow \qquad \alpha (\tilde{R} + A_R + rA_{N-Y})^2, \quad \alpha \sim N\xi^2$

 R^2 term w/ contributions from torsion and Nieh-Yan term

Quantum correction generates scalaron ('23 He, KK, Mukaida)

leading contribution in the large
$$N$$
 R^2 term w/ cor

$$S = \int d^4x \left[\frac{\Phi_{\rm E}^2}{12} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \left(\partial_\mu \Phi_{\rm E} \partial_\nu \Phi_{\rm E} \right) - \frac{r^2}{8} \frac{\Phi_{\rm E}^2}{8} \tilde{g}^{\mu\nu} \partial_\mu \ln \left| \Omega^2 \right| \partial_\nu \ln \eta d\mu \right]$$

 $\tilde{R} + A_R + rA_{N-Y} \otimes \left(\begin{bmatrix} \pi_i \\ \pi_i \end{bmatrix} \right) \otimes \tilde{R} + A_R + rA_{N-Y} \qquad \Longrightarrow \qquad \alpha (\tilde{R} + A_R + rA_{N-Y})^2, \quad \alpha \sim N\xi^2$

and ξ : ntributions from torsion and Nieh-Yan term $\Phi_{\rm E} - \frac{\Phi_{\rm E}^2/\Omega^2}{6M_{\rm pl}^2} \partial_\mu \phi_i \partial_\nu \phi^i - \left(\frac{\Phi_{\rm E}^2/\Omega^2}{6M_{\rm pl}^2}\right)^2 V(\phi) - \frac{\alpha\gamma^2}{6M_{\rm pl}^2}$ $|\Omega^2|$, $\Omega^2 \equiv 1 + 12 \left(\frac{\xi}{2} \frac{\tilde{\pi}_i^2}{\Phi_{\mathrm{T}}^2} + 2\alpha \frac{\gamma}{\Phi_{\mathrm{T}}^2} \right)$

Quantum correction generates scalaron ('23 He, KK, Mukaida)

 $\tilde{R} + A_R + rA_{N-Y} \otimes \left(\begin{bmatrix} \pi_i \\ \pi_i \end{bmatrix} \right) \otimes \tilde{R} + A_R + rA_{N-Y} \qquad \Longrightarrow \qquad \alpha (\tilde{R} + A_R + rA_{N-Y})^2, \quad \alpha \sim N\xi^2$

leading contribution in the large N and ξ : R^2 term w/ contributions from torsion and Nieh-Yan term

Scalaron is induced with a mass

Cutoff scale $\Lambda_{E-C} = |R_{N+s}|^{-1/2} = \frac{\sqrt{6r}}{\sqrt{|1-r^2|}} M_{Pl}$

Mass term and cosmological constants are also induced…

$$m_{\sigma}^2 = \frac{M_{\rm Pl}^2}{12\alpha r^2}$$

Summary

Summary

- of inflation, which have some unitarity issues.
- the theory to resolve the unitairity issues.
- HI in the Palatini formalism is also a good model, with less unitarity issues, but R^2 term does not UV-extends the theory
- and Palatini formalism.
- by the R^2 term/scalaron does not work.

- Higgs inflation (HI) in the metric formalism is one of the well-motivated models

- R^2 term can be induced by quantum correction w/ scalaron and UV-extends

- HI in the Einstein-Cartan gravity w/ Nieh-Yan term connects HI in the metric

- The theory becomes "Palatini limit" at $r \simeq 1/\sqrt{\xi}$ below which UV-extension

- Above the region, the model looks fine, but still has the naturalness problem.

Appendix

Comment on the frame independence of the cutoff scale 2308.15420 For the scalar theory with non-trivial kinetic term, $\int d^4x \frac{1}{2} g^{\mu\nu} G_{ab}(\pi) \partial_{\mu} \pi^a \partial_{\nu} \pi^b$

For the scalar theory with non-trivial kinetic term, $\int d^4x \frac{1}{2} g^{\mu\nu} G_{ab}(\pi) \partial_{\mu} \pi^a \partial_{\nu} \pi^b$ p_3 ϕ^k ϕ^{j}

Comment on the frame independence of the cutoff scale 2308.15420

- $G_{IJ} \sim (\partial^2 G_{IJ}) \pi^2 \sim \bar{R} \pi^2$
- the 2-to-2 scattering amplitude (with $\pi^{I} = e_{a}^{I}\pi^{a}$) can be evaluated as $\mathcal{M}_{IJ\leftrightarrow KL} = \frac{2}{3} \left[s_{IJ} \bar{R}_{I(KL)J} + s_{IK} \bar{R}_{I(JL)K} + s_{IL} \bar{R}_{I(JK)L} \right],$ ('16 Alonso+; '19 Nagai+; 21 Cohen+,...)

For the scalar theory with non-trivial kinetic term, $\int d^4x \frac{1}{2} g^{\mu\nu} G_{ab}(\pi) \partial_{\mu} \pi^a \partial_{\nu} \pi^b$ $\mathcal{M}_{IJ\leftrightarrow KL} = \frac{2}{3} \left[s_{IJ} \bar{R}_{I(KL)J} + s_{IK} \bar{R}_{I(JL)K} + s_{IL} \bar{R}_{I(JK)L} \right],$ p_3 ϕ^k ϕ^{j}

Comment on the frame independence of the cutoff scale 2308.15420

- $G_{IJ} \sim (\partial^2 G_{IJ})\pi^2 \sim \bar{R}\pi^2$
- the 2-to-2 scattering amplitude (with $\pi^{I} = e_{a}^{I}\pi^{a}$) can be evaluated as

('16 Alonso+; '19 Nagai+; 21 Cohen+,...)

 $\land \simeq |\bar{R}|^{-1/2}$

For the scalar theory with non-trivial kinetic term, $\int d^4x \frac{1}{2} g^{\mu\nu} G_{ab}(\pi) \partial_{\mu} \pi^a \partial_{\nu} \pi^b$ $\mathcal{M}_{IJ\leftrightarrow KL} = \frac{2}{3} \left[s_{IJ} \bar{R}_{I(KL)J} + s_{IK} \bar{R}_{I(JL)K} + s_{IL} \bar{R}_{I(JK)L} \right],$ p_3 ϕ^k ϕ^{J}

Comment on the frame independence of the cutoff scale 2308.15420

- $G_{IJ} \sim (\partial^2 G_{IJ}) \pi^2 \sim \bar{R} \pi^2$
- the 2-to-2 scattering amplitude (with $\pi^{I} = e_{a}^{I}\pi^{a}$) can be evaluated as

('16 Alonso+; '19 Nagai+; 21 Cohen+,...)

$$\longrightarrow \Lambda \simeq |\bar{R}|^{-1/2}$$

It is unchanged under field redefinition 🤤

$$\pi^a \to \tilde{\pi}^A(\pi^a)$$

For the scalar theory with non-minimal coupling to gravity,

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2 + \xi \pi_i^2}{2} \right) R - \frac{1}{2} \partial_\mu \pi_i^2 \right]$$

Comment on the frame independence of the cutoff scale 2308.15420

no scattering?

Comment on the frame independence of the cutoff scale 2308.15420 For the scalar theory with non-minimal coupling to gravity,

 $\mathcal{S} = \int d^4x \sqrt{-g} \left| \left(\frac{\hbar}{-g} \right) \right| \left(\frac{\hbar}{g} \right) \right| \left(\frac{\hbar}{g} \right) \left| \left(\frac{\hbar}{g} \right) \right| \left(\frac{\hbar}{g} \right) \right| \left(\frac{\hbar}{g} \right) \left| \left(\frac{\hbar}{g} \right) \right| \left(\frac{\hbar}{g} \right) \left| \left(\frac{\hbar}{g} \right) \right| \left(\frac{\hbar}{g} \right) \right| \left(\frac{\hbar}{g} \right) \left| \left(\frac{\hbar}{g} \right) \left| \left(\frac{\hbar}{g} \right) \right| \left(\frac{\hbar}{g} \right) \left| \left(\frac{\hbar}{g} \right)$

$$\left(\frac{M_{\text{pl}}^2 + \xi \pi_i^2}{2}\right) R - \frac{1}{2} \partial_\mu \pi_i^2$$
 no scattering?

We have scattering from the non-minimal coupling.

For the scalar theory with non-minimal coupling to gravity,

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2 + \xi \pi_i^2}{2} \right) R - \frac{1}{2} \partial_\mu \pi_i^2 \right] \iff \mathcal{S} = \int d^4x \sqrt{-g} \left[\left(\frac{M_{\rm pl}^2}{2} \right) R - \frac{1}{\Omega^2} \left(\delta_{ij} + \frac{6\xi^2}{\Omega^2} \frac{\pi_i \pi_j}{M_{\rm pl}^2} \right) \partial_\mu \pi_j^2 \right]$$

but the frame independence is not clear even if we use the geometrical technique (?)

Comment on the frame independence of the cutoff scale 2308.15420

scattering appears as the contact term in the Einstein frame,

Comment on the frame independence of the cutoff scale 2308.15420 Extract the conformal mode from graviton,

 $S = \int d^4x \left(\frac{\Phi_J^2}{12} \Omega^2 \tilde{R} - \frac{\tilde{g}^{\mu\nu}}{2} G^J_{ab}(\varphi_J) \partial_\mu \varphi_J^a \partial_\nu \varphi_J^b \right),$

 $g_{\mu\nu} = \frac{\Phi^2}{6M_{\rm pl}^2} \tilde{g}_{\mu\nu}, \quad \det[\tilde{g}_{\mu\nu}] = -1$

$$\varphi_{\rm J}^{a} = \left(\Phi_{J}, \pi_{J}^{i}\right)$$

$$\left(G_{ab}^{\rm J}\right) \equiv \begin{pmatrix} -\Omega^{2} & -\xi \Phi_{\rm J} \pi_{j} / M_{\rm pl}^{2} \\ -\xi \Phi_{\rm J} \pi_{i} / M_{\rm pl}^{2} & \frac{\Phi_{\rm J}^{2}}{6M_{\rm pl}^{2}} \delta_{ij} \end{pmatrix}$$

Extract the conformal mode from graviton,

Geometrical technique gives - $\Lambda \simeq |\bar{R}|^{-1/2} \simeq \frac{M_{\rm pl}}{\xi}$ for $\pi\pi \to \pi\pi$

Comment on the frame independence of the cutoff scale 2308.15420

 $g_{\mu\nu} = \frac{\Phi^2}{6M_{\rm pl}^2} \tilde{g}_{\mu\nu}, \quad \det[\tilde{g}_{\mu\nu}] = -1$

$$\begin{array}{c} & & & & & & & \\ & & & & & \\ & & & & \\ \hline \end{array} \\ & & & & \\ \end{array} \\ S = \int \mathrm{d}^4 x \, \left(\frac{\Phi_J^2}{12} \Omega^2 \tilde{R} - \frac{\tilde{g}^{\mu\nu}}{2} G^J_{ab}(\varphi_J) \partial_\mu \varphi^a_J \partial_\nu \varphi^b_J \right), \\ & & & \\ & & & \\ & &$$

- No scattering amplitude that involve the conformal mode Φ - Conformal transformation is now the field redefinition for Φ and frame independence is now a manifest .

Extract the conformal mode from graviton,

Geometrical technique gives - $\Lambda \simeq |\bar{R}|^{-1/2} \simeq \frac{M_{\rm pl}}{\xi}$ for $\pi\pi \to \pi\pi$

and frame independence is now a manifest .

- No scattering amplitude that involve the conformal mode Φ - Conformal transformation is now the field redefinition for Φ Extraction of the conformal mode is also useful to see the quantum effect.

Comment on the frame independence of the cutoff scale 2308.15420

 $g_{\mu\nu} = \frac{\Phi^2}{6M_{\rm pl}^2} \tilde{g}_{\mu\nu}, \quad \det[\tilde{g}_{\mu\nu}] = -1$

$$\begin{array}{l} & & & & & & \\ & & & & \\ & & & \\ & & & \\ \end{array} \end{array} \xrightarrow{6M_{\mathrm{pl}}^2} & & & & & \\ & & & & \\ & & & \\ & & & \\ S = \int \mathrm{d}^4 x \, \left(\frac{\Phi_{\mathrm{J}}^2}{12} \Omega^2 \tilde{R} - \frac{\tilde{g}^{\mu\nu}}{2} G^{\mathrm{J}}_{ab}(\varphi_{\mathrm{J}}) \partial_\mu \varphi^a_{\mathrm{J}} \partial_\nu \varphi^b_{\mathrm{J}} \right), \\ & & & \\ & & & \\ & & & \\ & &$$

