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Various flavors of RG running

Physical running. Define the coupling in terms of the
scattering amplitude at some particular momentum p = E .
Changing E changes the value of the coupling.

µ−running. In perturbation theory using dimreg or cutoff
regularization one has to introduce a parameter µ to preserve
dimensions, e.g. in log(p2/µ2). Taking the derivative of the
coupling with respect to µ defines another kind of RG.

Non-perturbative RG. One studies the dependence of the
couplings in the quantum effective action on a UV cutoff
(Wilsonian RG) or IR cutoff (FRG).

When do they give the same results?
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Shift-invariant scalar

L = −Z1

2
∂µϕ∂

µϕ− 1
2

Z2□ϕ□ϕ− 1
4

Z 2
2 g(∂µϕ∂µϕ)(∂νϕ∂

νϕ)

with Z2 = Z1
m2 . ([Z1] = [g] = 0, [Z2] = −2)

Characteristic scales:
- ghost mass m
- interaction scale: m/ 4

√
g

In order for ghosts to be propagating and weakly coupled need
g ≪ 1
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Energy domains

E < m low energy regime: only massless particles
propagate and are weakly coupled; massive ghosts do not
propagate
m < E < m/ 4

√
g: intermediate energy regime; also ghosts

propagate and are weakly coupled
m/ 4

√
g < E high energy regime; apparently strongly

interacting
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2-point function

i
3
2

1
Z1

p2 1
(4π)2

(
1
ϵ
+ log 4π − γ − log

m2

µ2 +
7
6
+ O(ϵ)

)

No renormalization of Z2

There is µ-running of Z1 but no physical running.
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General 4 point amplitude
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Low energy

From EFT argument we expect to generate new interactions

L6 =
g6

4M6∂µϕ∂
µϕ□∂νϕ∂

νϕ+
g′

6
4M6∂µϕ∂νϕ□∂µϕ∂νϕ

L8 = − g8

4M8∂µϕ∂
µϕ□2∂νϕ∂

νϕ−
g′

8
4M8∂µϕ∂νϕ□

2∂µϕ∂νϕ

Indeed defining

g(µ) = gB − 5g2m4

32π2M4

[
1
ϵ
− γE − log

(
4πµ2

m2

)
+

11
30

]
the amplitude becomes
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low energy amplitude
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Low energy physical beta functions

βg = 0
βg6 = 0
βg′

6
= 0

βg8 =
41g2

480π2

βg′
8

=
g2

240π2
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To be compared with

the µ-beta function

µ
∂g(µ)
∂µ

=
5g2

16π2

and the low energy FRG

βg =
5(Z1 + 2k2/m2)

32π2(Z1 + k2/m2)3
g2k4

M4 → 5g2

32π2
k4

m4

that indeed goes to zero in the limit k → 0
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High energy amplitude

ḡ(E) = g +
5g2
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higher derivative terms cancel out
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ḡ2

192π2m4

[
log

(
−s
E2

)
(13s2 + t2 + u2)

+ log

(
−t
E2

)
(s2 + 13t2 + u2)

+ log

(
−u
E2

)
(s2 + t2 + 13u2)

]



Motivations Scattering amplitudes HDG

High energy physical beta function

βḡ =
5ḡ2

16π2

agrees with the µ-beta function and with the FRG
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Matching high and low energy

no physical interpretation in terms of scattering



Motivations Scattering amplitudes HDG

High energy puzzle

Theory is asymptotically free for g < 0
Still it seems to become strongly coupled for E > m/ 4

√
g

What is the meaning of asymptotic freedom in this case?
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Asymptotic states

Cancellations at tree level between the contributions of
massless particles and ghosts in the inclusive cross sections
B. Holdom, [arXiv:2303.06723 [hep-th]]

Verified also at one loop (D. Buccio)
But why can one not consider exclusive cross sections?
The free theory that one is asymptoting to (dipole ghost) does
not have propagating d.o.f.
N. N. Bogolubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, General Principles
of Quantum Field Theory, Springer
V.O. Rivelles, Triviality of higher derivative theories, Phys.Lett.B 577 (2003)
137-142, arXiv: hep-th/0304073 [hep-th]
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Lessons from this example

physical running of g only defined in asymptotic regions.
in the low energy EFT at one loop the coupling g does not
run but there are higher order operators with 6 and 8
derivatives, some of which exibit physical running
higher dimension operators disappear above the mass
threshold
µ-running agrees with physical running far above the mass
threshold
FRG running agrees with physical running far above and
far below the mass threshold
power law running seen in the FRG is an aspect of
threshold behavior
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Quadratic gravity

S =

∫
d4x

√
−g

[
− 2ZΛ + ZR − 1

2λ
C2 − 1

ξ
R2 +

1
ρ

E
]
,

=

∫
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√
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−2ZΛ + ZR − 1

2λ

(
C2 − 2ω

3
R2 + 2θE

)]

Z =
1
2

m2
P =

1
16πG

,

Note: SE = −SL
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This theory is renormalizable
K. S. Stelle,
“Renormalization of Higher Derivative Quantum Gravity,”
Phys. Rev. D 16 (1977), 953-969

It propagates a massless graviton, a massive spin 2 ghost and
a massive (non-ghost) spin 0.
The massive spin 2 is a tachyon for λ < 0 and the massive spin
0 is a tachyon for ξ > 0.
Maybe the issue of the ghost can be circumvented
D. Anselmi and M. Piva, JHEP 05 (2018), 027 [arXiv:1803.07777 [hep-th]].
A. Salvio, Front. in Phys. 6, 77 (2018) [arXiv:1804.09944 [hep-th]].
J. F. Donoghue and G. Menezes, Nuovo Cim. C 45, no.2, 26 (2022)
[arXiv:2112.01974 [hep-th]].
L. Buoninfante, JHEP 12 (2023), 111 [arXiv:2308.11324 [hep-th]].
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Linearization

gµν = ḡµν + hµν

S(2)(ḡ,h) =
∫

d4x
√

|ḡ|hαβHαβ,γδhγδ .

One can choose the gauge such that

H = □̄2K+ Jµν∇̄µ∇̄ν + Lµ∇̄µ +W

K =
1

4λ
Ptl +

9
4(3ξ − 2λ)

Ptr

where Pαβ,γδ
tr = 1

4 ḡαβḡγδ, Ptl = I− Ptr
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K is a tensorial wave function renormalization constant that
gives different weights to the spin-2 and spin-0 components of
h. We canonically normalize the fields by redefining
h →

√
K−1h, so that the action can be rewritten as

S(2) =

∫
d4x

√
|ḡ|hαβOαβ,γδhγδ ,

where
O = □̄2I+ Vµν∇̄µ∇̄ν + Nµ∇̄µ + U ,

and V =
√
K−1J

√
K−1 etc.

V ∼ (R̄,m2
P), N ∼ ∇̄R̄, U ∼ (R̄2, ∇̄2R̄,m2

PR̄,m2
PΛ).
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Different ways of using the BF method

choose a particular background (e.g. a sphere)
the background is a small perturbation of flat space
the background is a generic metric

Second method used by
J. Julve, M. Tonin, Nuovo Cim. B 46 (1978) 137.

Third method used by
E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 104 (1981) 377; Nucl. Phys. B 201
(1982) 469.
I.G. Avramidi, A.O. Barvinski, Phys. Lett. 159 B, 269 (1985).
and everybody else since then
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The logarithmic divergences or 1/ϵ poles are proportional to
the heat kernel coefficient
(A. O. Barvinsky and G. A. Vilkovisky, Phys. Rept. 119, 1-74 (1985).)

1
32π2

∫
d4x tr

[ I
90
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R̄2
ρλστ − R̄2

ρλ +
5
2

R̄2
)
+

1
6
RρλRρλ

−
R̄ρλVρλ − 1

2 R̄Vρ
ρ

6
+

VρλVρλ + 1
2V

ρ
ρVλ

λ

24
− U

]
,

where Rρλ = [∇ρ,∇λ] acting on symmetric tensors.
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βλ = − 1
(4π)2

133
10

λ2

βω = − 1
(4π)2

25 + 1098ω + 200ω2

60
λ

βθ =
1

(4π)2
7(56 − 171θ)

90
λ

[I.G. Avramidi, A.O. Barvinski, Phys. Lett. 159 B, 269 (1985).]

AF in a subset of first quadrant, so spin 0 is a tachyon.



Motivations Scattering amplitudes HDG

Beta functions confirmed by several other calculations,
also using the FRG in various approximations.

[G. de Berredo-Peixoto and I. L. Shapiro, Phys. Rev. D 71 (2005), 064005
[arXiv:hep-th/0412249 [hep-th]].]
[A. Codello, R. P., Phys.Rev.Lett. 97 22 (2006).]

[D. Benedetti, P. F. Machado, F. Saueressig, Mod. Phys. Lett. A 24 (2009) 2233
[arXiv:0901.2984 [hep-th]]
[M. Niedermaier, Nucl. Phys. B833, 226-270 (2010).]

[G. Narain and R. Anishetty, J. Phys. Conf. Ser. 405 (2012), 012024
[arXiv:1210.0513 [hep-th]].]
[K. Groh, S. Rechenberger, F. Saueressig, O. Zanusso, PoS EPS -HEP2011
(2011) 124 [arXiv:1111.1743 [hep-th]].]
[N. Ohta, R.P. Class. Quant. Grav. 31 015024 (2014); arXiv:1308.3398]

[K. Falls, N. Ohta and R. Percacci, Phys. Lett. B 810 (2020), 135773
[arXiv:2004.04126 [hep-th]].]
[S. Sen, C. Wetterich, M. Yamada, JHEP 03 (2022) 130, arXiv:2111.04696
[hep-th]
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Gravity/QCD analogy

weakly coupled in IR limit
AF in the UV limit
strongly coupled in intermediate regime

B. Holdom and J. Ren, “QCD analogy for quantum gravity,” Phys. Rev. D 93
(2016) no.12, 124030 [arXiv:1512.05305 [hep-th]].
A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080, arXiv: 1403.4226
[hep-ph]
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Einstein–Hilbert GFP

Expanding gµν = ηµν + hµν

S =
1
G

∫
ddx

[
(∂h)2 + h(∂h)2 + h2(∂h)2 + . . .

]
+

1
λ

∫
ddx

[
(□h)2 + h(□h)2 + h2(□h)2 + . . .

]
then rescaling h →

√
G h

S =

∫
ddx

[
(∂h)2 +

√
G h(∂h)2 + G h2(∂h)2 + . . .

]
+

G
λ

∫
ddx

[
(□h)2 +

√
G h(□h)2 + G h2(□h)2 + . . .

]
GFP for λ ̸= 0 or λ → ∞
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Stelle GFP

Expanding gµν = ηµν + hµν

S =
1
G

∫
ddx

[
(∂h)2 + h(∂h)2 + h2(∂h)2 + . . .

]
+

1
λ

∫
ddx

[
(□h)2 + h(□h)2 + h2(□h)2 + . . .

]
rescaling h →

√
λh

S =
λ

G

∫
ddx

[
(∂h)2 +

√
G h(∂h)2 + G h2(∂h)2 + . . .

]
+

∫
ddx

[
(□h)2 +

√
λh(□h)2 + λh2(□h)2 + . . .

]
GFP for G ̸= 0 or even G → ∞
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Summary

EH FP describes gravity in the IR
Stelle FP (FP1) possible UV completion
there may be other UV completions related to nontrivial
FP’s

Important questions:

what is the physics at the UV FP (either Gaussian or not)?
can we flow from the UV fixed point to the EH FP in the IR?
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Physical running in QG

Do the beta functions reflect the behavior of the scattering
amplitude?
For that we return to the second way of using the BF method
Remember

gµν = ḡµν + hµν

Expand the background field

ḡµν = ηµν + h̄µν

Then

O ≡ ⊡2I+Dµνρσ∂µ∂ν∂ρ∂σ + Cµνρ∂µ∂ν∂ρ

+ Vµν∂µ∂ν +N µ∂µ + U ,

where D, C, V, N , U are polynomials in h̄
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The physical running of λ and ξ can be read off the two point
function, which from terms in the EA

bλC̄µνρσ log □̄C̄µνρσ + bξR̄ log □̄R̄

in the effective action, and the beta functions are

βλ = −4bλλ
2 , βξ = −2bξξ

2 .
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p p
q + p

q
p p

q

Figure: Diagrams contributing to the two-point function of h̄: bubbles
(left) and tadpoles (right). The thin line can be the h propagator or
one of the ghosts, the thick line is the h̄ propagator, with momentum
p. The vertices can come from expanding any one among D, C, V, N ,
U .
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The term trU in the heat kernel must come from a tadpole.
Also some of the trRR terms

If one removes those terms, the rest is a bilinear form in h̄ that
is not the linearization of a covariant expression in ḡ.

However, there are also infrared contributions to the log(−p2)
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No IR divergences in the real world because of mP .
At high energy one assumes that mP can be neglected
then there would be IR divergences.
IR contributions to log p2 are not the linearization of a covariant
expression in ḡ but summing them to the rest we get again a
covariant expression.
The terms with logµ2 only come from the UV and reproduce the
old beta functions.
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Beta functions

Old New

βλ − 1
(4π)2

133
10 λ2 − 1

(4π)2
(1617λ−20ξ)λ

90

βξ − 1
(4π)2

5(ξ2−36λξ+72λ2)
36 − 1

(4π)2
ξ2−36λξ−2520λ2

36
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Separatrices

Old flow

s1 : ξ =
1291 +

√
1637881

20
λ ≈ 128.5λ ⇒ ω = −0.0233

s2 : ξ =
1291 −

√
1637881

20
λ ≈ 0.5601λ ⇒ ω = −5.3558

New flow

s1 : ξ =
569 +

√
386761

15
λ ≈ 79.4λ ⇒ ω = −0.03778

s2 : ξ =
569 −

√
386761

15
λ ≈ −3.53λ ⇒ ω = 0.8506
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Figure: Left: old flow. Right: new flow.
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Main new feature

Asymptotic freedom is possible without the tachyon.
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General summary

Whereas in theories with 2-derivative kinetic terms the
µ-running and physical running agree in the high energy limit,
in theories with 4 derivatives it is not necessarily so.
If there are IR divergences, the two definitions of running may
differ. This did not happen in the scalar model but it happens in
gravity.
AF this does not yet mean that the theory is well behaved,
because the amplitude still grows like E4.
Meaning of AF in these theories has to be better understood.
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Appendix: the O(3) NLSM

L = −g2

2
(∂µφ)

2

1 +
φ2

1
4 +

φ2
2

4

the 2 → 2 amplitude is

M = g2
0s −

g4
0

4
[I(t)(s + t + u) + I(u)(s − t + u)]

where
I(p2) = T − p2B(p2)

is the unique IR finite combination of

T = −i
∫

d2q
(2π)2

1
q2 + iϵ

B(p2) = −i
∫

d2q
(2π)2

1
(q2 + iϵ)((p − q)2 + iϵ)
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g2
R(E

2) = g2
0 +

g4
0

2
I(E2)

I(p2)− I(E2) = log
(

E2/p2
)

Then

M = g2(E2)s +
g4

R
8π

(
log

−t2

E2 + log
−u
E2

)
−

g4
R

8π
(t − u) log

t
u

giving

βg = E
∂gR

∂E
=

g3

4π
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With UV and IR cutoff

T =
1

2π
log(Λ2/k2)

p2B(p2) =
1

2π
log(−p2/k2)

With dimreg at both ends

T = 0

p2B(p2) =
1

2π

[
1
ϵ
− log(−p2/µ2)

]
with dimreg in UV and cutoff in IR

T =
1

2π

[
1
ϵ
− log(k2/µ2)

]
p2B(p2) =

1
2π

log(−p2/k2)
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