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Motivations
[

Various flavors of RG running

Physical running. Define the coupling in terms of the
scattering amplitude at some particular momentum p = E.
Changing E changes the value of the coupling.

u—running. In perturbation theory using dimreg or cutoff
regularization one has to introduce a parameter p to preserve
dimensions, e.g. in log(p?/12). Taking the derivative of the
coupling with respect to 1 defines another kind of RG.

Non-perturbative RG. One studies the dependence of the
couplings in the quantum effective action on a UV cutoff
(Wilsonian RG) or IR cutoff (FRG).

When do they give the same results?
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Shift-invariant scalar

Z. 1
L= ~F0,00"¢ — 52,0006 - 22 9(0,$0")(9,¢0" )

with 2 = 4. ((Z1] = [g] = 0, [Z] = —

Characteristic scales:
- ghost mass m
- interaction scale: m/{/g

In order for ghosts to be propagating and weakly coupled need
gk
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Energy domains

@ E < mlow energy regime: only massless particles
propagate and are weakly coupled; massive ghosts do not
propagate

@ m < E < m/{g: intermediate energy regime; also ghosts
propagate and are weakly coupled

@ m/y/g < E high energy regime; apparently strongly
interacting
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2-point function

31 , 1

27, P @

1 m? 7
<€+Iog47r—7— loqu2+6+O(€))

No renormalization of 2>
There is u-running of Z; but no physical running.
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General 4 point amplitude
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Low energy

From EFT argument we expect to generate new interactions

v, Y6 v

Lo = %aﬂsawma@a 6+ 3 o5 0u00,000" 60" )
vy 9 v
Lo — _45\’;8@@%528,@6 6 — 2155 Oud0, 0P 906

Indeed defining
B 5¢°m* [1 A7 P 11
91 =96 = 35 2ppa L‘”E""g(mz 30

the amplitude becomes
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low energy amplitude
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gs(E) = 192&2 960€r2 log(E?/m?), gg(E) = 320772 + 4807r Iog(EZ/mz)

with gs =
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Low energy physical beta functions

ﬁg =0
596 =0
ﬂgé =0
48P
Yo = 280s2
2
Bg’ = g

8 24072
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To be compared with

the u-beta function
ag(r) _ 59

Fou =~ 16x2

and the low energy FRG

5(Z; +2k?/m?) g?k*  5g® k*

Y9 = 3on2(Z, + K2JmR)s ME " B2r2

that indeed goes to zero in the limit k — 0
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High energy amplitude

o 59° E?\ 17
9(E)=g+ 302 [Iog <mg> —30}

higher derivative terms cancel out
—ni(s2 + 2+ UP)
g 2
+m |Og E2 (133 + t ‘l‘U)
+log <Et> (8% + 1312 + u?)

—u 2, 42 2
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High energy physical beta function

53°
bg = 1672

agrees with the u-beta function and with the FRG
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Matching high and low energy

g
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3=

no physical interpretation in terms of scattering



Scattering amplitudes
00000000000 e00

High energy puzzle

Theory is asymptotically free for g < 0
Still it seems to become strongly coupled for E > m/¢/g
What is the meaning of asymptotic freedom in this case?
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Asymptotic states

Cancellations at tree level between the contributions of
massless particles and ghosts in the inclusive cross sections
B. Holdom, [arXiv:2303.06723 [hep-th]]

Verified also at one loop (D. Buccio)
But why can one not consider exclusive cross sections?

The free theory that one is asymptoting to (dipole ghost) does

not have propagating d.o.f.

N. N. Bogolubov, A. A. Logunov, A. |. Oksak, I. T. Todorov, General Principles
of Quantum Field Theory, Springer

V.O. Rivelles, Triviality of higher derivative theories, Phys.Lett.B 577 (2003)

137-142, arXiv: hep-th/0304073 [hep-th]
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Lessons from this example

@ physical running of g only defined in asymptotic regions.

@ in the low energy EFT at one loop the coupling g does not
run but there are higher order operators with 6 and 8
derivatives, some of which exibit physical running

@ higher dimension operators disappear above the mass
threshold

@ u-running agrees with physical running far above the mass
threshold

@ FRG running agrees with physical running far above and
far below the mass threshold

@ power law running seen in the FRG is an aspect of
threshold behavior
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Quadratic gravity

1 1
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This theory is renormalizable
K. S. Stelle,
“Renormalization of Higher Derivative Quantum Gravity,”

Phys. Rev. D 16 (1977), 953-969

It propagates a massless graviton, a massive spin 2 ghost and
a massive (non-ghost) spin 0.

The massive spin 2 is a tachyon for A < 0 and the massive spin
0 is a tachyon for ¢ > 0.

Maybe the issue of the ghost can be circumvented

D. Anselmi and M. Piva, JHEP 05 (2018), 027 [arXiv:1803.07777 [hep-th]].
A. Salvio, Front. in Phys. 6, 77 (2018) [arXiv:1804.09944 [hep-th]].

J. F. Donoghue and G. Menezes, Nuovo Cim. C 45, no.2, 26 (2022)
[arXiv:2112.01974 [hep-th]].

L. Buoninfante, JHEP 12 (2023), 111 [arXiv:2308.11324 [hep-th]].
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Linearization

guu = Q/U/ + h,ul/

S@ (g, h /d4x\/|g |hogHOP P hs
One can choose the gauge such that
H =K+ IV, V, + L'V, + W

1 9

- Pyt P
K=t g@emanyt™

where P37 = 1ge8g0 Py =1 — Py,
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K is a tensorial wave function renormalization constant that
gives different weights to the spin-2 and spin-0 components of
h. We canonically normalize the fields by redefining

h — vK-1h, so that the action can be rewritten as

s _ / &*x\/[51has 05,5
where _ _
O =PI+ VY, V, + NV, + U,
and V= vK-1JVK-1 etc.
V ~ (R,m3),N~ VR, U~ (R?, V2R, m2R, m2A).
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Different ways of using the BF method

@ choose a particular background (e.g. a sphere)
@ the background is a small perturbation of flat space
@ the background is a generic metric

Second method used by

J. Julve, M. Tonin, Nuovo Cim. B 46 (1978) 137.

Third method used by

E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 104 (1981) 377; Nucl. Phys. B 201
(1982) 469.

I.G. Avramidi, A.O. Barvinski, Phys. Lett. 159 B, 269 (1985).

and everybody else since then
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The logarithmic divergences or 1/e poles are proportional to
the heat kernel coefficient
(A. O. Barvinsky and G. A. Vilkovisky, Phys. Rept. 119, 1-74 (1985).)

3272
RV —JRVP, N VoA VP 4 JVP VA
6 24

1 I 5 1
/d4X tr [% <Rp)\o.7. RQ)\ + 2R2> + éRpARpA

*U}v

where R, = [V,, V,] acting on symmetric tensors.
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1133,
5“_(477)2WA
P 25 + 1098w + 200° |
© T (4n)2 60

1 7(56—1716)
Po = (47)2 0

[1.G. Avramidi, A.O. Barvinski, Phys. Lett. 159 B, 269 (1985).]

AF in a subset of first quadrant, so spin 0 is a tachyon.
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Beta functions confirmed by several other calculations,
also using the FRG in various approximations.

[G. de Berredo-Peixoto and I. L. Shapiro, Phys. Rev. D 71 (2005), 064005
[arXiv:hep-th/0412249 [hep-th]].]
[A. Codello, R. P, Phys.Rev.Lett. 97 22 (2006).]

[D. Benedetti, P. F. Machado, F. Saueressig, Mod. Phys. Lett. A 24 (2009) 2233
[arXiv:0901.2984 [hep-th]]
[M. Niedermaier, Nucl. Phys. B833, 226-270 (2010).]

G. Narain and R. Anishetty, J. Phys. Conf. Ser. 405 (2012), 012024
arXiv:1210.0513 [hep-th]].]

K. Groh, S. Rechenberger, F. Saueressig, O. Zanusso, PoS EPS -HEP2011
(2011) 124 [arXiv:1111.1743 [hep-th]].]

[N. Ohta, R.P. Class. Quant. Grav. 31 015024 (2014); arXiv:1308.3398]

K. Falls, N. Ohta and R. Percacci, Phys. Lett. B 810 (2020), 135773
arXiv:2004.04126 [hep-th]].]

S. Sen, C. Wetterich, M. Yamada, JHEP 03 (2022) 130, arXiv:2111.04696
hep-th]
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Gravity/QCD analogy

@ weakly coupled in IR limit
@ AF inthe UV limit
@ strongly coupled in intermediate regime

B. Holdom and J. Ren, “QCD analogy for quantum gravity,” Phys. Rev. D 93
(2016) no.12, 124030 [arXiv:1512.05305 [hep-th]].

A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080, arXiv: 1403.4226
[hep-ph]
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Einstein—-Hilbert GFP

Expanding g, = 1 +
s - lG / ox [(Oh)? + h(onY? + H(ORP + .. ]
+1X / ox (R + BB + PR + .. ]
then rescaling h — vGh
s - / o [(9h) +VGh(ohY + GH(ORY + .. |
+f/ddx [(Dh)2 +VGh(Oh)? + GR(Oh)? + .. ]

GFPfor A\ #00r A — o0
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Stelle GFP

Expanding 9, = nuw + hu
s - 1@ / o [(9h) + h(oh) + IP(h) + .. |
45 [ (@2 + Ham? + @R+

rescaling h — VA h

[E—

s — % / d%x [(0h)? + VG h(oh)? + GHA(ah)? +
/dd h)? + VXD + X RO + ... |

GFP for G# 0 oreven G — oo
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Summary

@ EH FP describes gravity in the IR
@ Stelle FP (FP4) possible UV completion
@ there may be other UV completions related to nontrivial

FP’s
Important questions:

@ what is the physics at the UV FP (either Gaussian or not)?
@ can we flow from the UV fixed point to the EH FP in the IR?J
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Physical running in QG

Do the beta functions reflect the behavior of the scattering
amplitude?

For that we return to the second way of using the BF method
Remember

guy = guy + h,ul/
Expand the background field

g,m/ =N + Epu
Then

O = PI+D"?9,0,0,0, +C""*d,0,0,
+ V9,0, + N*0, +U ,

where D, C, V, N, U are polynomials in h
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The physical running of A and ¢ can be read off the two point
function, which from terms in the EA

by C""* log ECWW + bgl_:? log OR
in the effective action, and the beta functions are

6)\ == —4b)\)\2 y B{ = —2b§€2 .
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Figure: Diagrams contributing to the two-point function of h: bubbles
(left) and tadpoles (right). The thin line can be the h propagator or
one of the ghosts, the thick line is the h propagator, with momentum

p. The vertices can come from expanding any one among D, C, V, N,
Uu.
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The term trU in the heat kernel must come from a tadpole.
Also some of the trRR terms

If one removes those terms, the rest is a bilinear form in h that
is not the linearization of a covariant expression in g.

However, there are also infrared contributions to the log(—p?)
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No IR divergences in the real world because of mp.

At high energy one assumes that mp can be neglected

then there would be IR divergences.

IR contributions to log p? are not the linearization of a covariant
expression in g but summing them to the rest we get again a
covariant expression.

The terms with log 12 only come from the UV and reproduce the
old beta functions.
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Old New
113342 1 (1617A—20€)\
O ~ @R 10 ~ ([@n)2 90
8 1 5(£2-386A6+72)%) 1 £2-36)¢—2520)2
€ | T (4r)? 36 " (4n)2 36
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Separatrices

Old flow
s e— 20T 2(: 037881 ~ 12857 = w— -0.0233
s e= 29 23 037881, ~ 056011 = w— ~5.3558
New flow
s £= wA ~794)\ = w——003778
s ¢ 2097 VI8OTOl\ | 353\ = w—0.8506

15
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Figure: Left: old flow. Right: new flow.
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Main new feature

Asymptotic freedom is possible without the tachyon.
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General summary

Whereas in theories with 2-derivative kinetic terms the
u-running and physical running agree in the high energy limit,
in theories with 4 derivatives it is not necessarily so.

If there are IR divergences, the two definitions of running may
differ. This did not happen in the scalar model but it happens in
gravity.

AF this does not yet mean that the theory is well behaved,
because the amplitude still grows like E4.

Meaning of AF in these theories has to be better understood.
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Appendix: the O(3) NLSM

the 2 — 2 amplitude is
4
M =ghs -~ % [I(t)(s+t+ u)+ (u)(s — t+ u)]

where
I(p?) = T - p*B(p°)
is the unique IR finite combination of

[ d’qg 1
T=—1] ere@+ic
o . [ d%q 1
86°) = 1 | oo (@@ T 07 T
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g4
GR(E?) = 6§ + 2 I(E?)

(p?) — I(E?) = log ( E?/p?)
Then
4 2 4
— (Es+ 9B (1og =L 1 10g 24 _ 94 - t
M =g°(E%)s+ 8 (Iog 2 + log E2> 87T(t u) Iogu
giving
o 3
Bg=E 9r _ 9

0E ~ 4r
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With UV and IR cutoff

e (A2 k2
T= 5 log(A=/ k<)

PPB(E?) = 5 loa(—07/K)
With dimreg at both ends
T=0
PPB(P) - 5- | loa(—%/1?)
27 | €
with dimreg in UV and cutoff in IR

e Gl
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