

Non-perturbative primordial relics and its cosmological implications 极早期宇宙的非微扰现象学研究

Yi-Fu Cai 蔡一夫

Plenary Talk @ Conference "Quantum Gravity and Cosmology 2024"

ShanghaiTech University, July 4th 2024

Collaborators: Chao Chen, Xin-Chen He, Jie Jiang, Chunshan Lin, Xiao-Han Ma, Shi Pi, Misao Sasaki, Xi Tong, Valeri Vardanyan, Bo Wang, Dong-Gang Wang, Sheng-Feng Yan, Guan-Wen Yuan, Zihan Zhou Articles: 1805.03639, 1902.08187, 1908.03942, 2003.03821, 2009.09833, 2010.03537, 2105.12554, 2112.13826, 2207.11910, 2306.17822

Content

- Primordial black holes: hypothetical phenomena at "small" scales
- Sound speed resonance (SSR) mechanism

Based on PRL 121 (2018) 081306, 1902.08187, 1908.03942, 2003.03821

• Beating the Lyth bound by resonant heavy field loops

Based on PRL 127 (2021) 251301

 Limits on Scalar-Induced Gravitational Waves by Pulsar Timing Array Observations

Based on Science Bulletin 68 (2023) 2487

• Summary

Primordial black holes

WHEN BLACK HOLES FORM

A PBH is a type of black hole which is not formed through the gravitational collapse of a star, but of the sufficiently large density perturbation in the early Universe.

[Carr et al., 2002.12778, 2006.02838]

Enhance power spectrum in inflation scenario

A novel method: SSR mechanism

Oscillating sound speed:

 $c_s^2 = 1 - 2\xi [1 - \cos(2k_*\tau)], \text{ with } \tau > \tau_i$

The amplitude: ξ is small and $\xi < 1/4$, such that c_s^2 is positively definite

The scale: k_* is the oscillation frequency

The beginning of oscillation: $|k_*\tau_i| \gg 1$

Equation of Motion:
$$v_k'' + \left(c_s^2 k^2 - \frac{z''}{z}\right) v_k = 0$$

Mukhanov-Sasaki variable: $v = z\zeta$

$$z = \sqrt{2\epsilon a}/c_s$$
 with $\epsilon \equiv -\dot{H}/H^2$

Mathieu equation:

$$\frac{d^2v_k}{dx^2} + (A_k - 2q\cos 2x)v_k = 0$$

where
$$x = -k_*\tau$$
, $A_k = \frac{k^2}{k_*^2}(1-2\xi)$ and $q = (2-\frac{k^2}{k_*^2})\xi <<1$

PHYSICAL REVIEW LETTERS 121, 081306 (2018)

[*CYF*, Tong, Wang, **Yan**, PRL 121 (2018) 081306]

Primordial Black Holes from Sound Speed Resonance during Inflation

Yi-Fu Cai, ^{12,8} Xi Tong, ^{12,3,+} Dong-Gang Wang, ^{45,5} and Sheng-Feng Yan^{12,4} ¹CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy,

University of Science and Technology of China, Hefei, Anhui 230026, China ²School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China ³Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Lorent: Institute for Theoretical Physics, Leiden University, 2333 CA Leiden, Netherlands

⁵Leiden Observatory, Leiden University, 2300 RA Leiden, Netherlands

(Received 13 May 2018; revised manuscript received 31 July 2018; published 24 August 2018)

We report on a novel phenomenon of the resonance effect of primordial density perturbations arisen from a sound speed parameter with an oscillatory behavior, which can generically lead to the formation of primordial black holes in the early Universe. For a general inflaton field, it can seed primordial density fluctuations, and their propagation is governed by a parameter of sound speed square. Once, if this parameter achieves an oscillatory feature for a while during inflation, a significant nonperturbative resonance effect on the inflaton field fluctuations takes place around a critical length scale, which results in significant peaks in the primordial power spectrum. By virtue of this robust mechanism, primordial black holes with specific mass function can be produced with a sufficient abundance for dark matter in sizable parameter ranges.

DOI: 10.1103/PhysRevLett.121.081306

narrow resonance

Resonance effect

Generating large inhomogeneities: SSR mechanism

> Enhanced curvature perturbation: [CYF, Tong, Wang, Yan, PRL 121 (2018) 081306]

Spikes on small scales, scale-invariant on large scales

Inflationary perturbation theory

dimensionless power spectrum

evaluated at horizon crossing

k = aH

de Sitter fluctuations

conversion

Scalar Fluctuations observation

scale-dependence

e.g. slow-roll inflation

$$P_{\mathscr{R}}(k) = A_s k^{n_s - 1}$$

$$n_s - 1 = 2\eta - 6\epsilon$$

Planck 2018 results. $n_s = 0.9649 \pm 0.0042$ nearly scale-invariant

Inflationary perturbation theory

Tensor Fluctuations

Besides scalar fluctuations inflation produces tensor fluctuations:

Lyth bound & effective field theory

$$\mathcal{L}_{\text{eff}} = \sum_{i} \frac{\mathcal{O}_{i}(\phi)}{\Lambda^{\Delta_{i}-4}} = \underbrace{\frac{1}{2} (\partial_{\mu}\phi)^{2} - V(\phi)}_{\mathcal{L}_{\text{s.r.}}} + \sum_{n} c_{n} V(\phi) \frac{\phi^{2n}}{\Lambda^{2n}} + \sum_{n} d_{n} \frac{(\partial\phi)^{2n}}{\Lambda^{4n}} + \cdots$$

Beating the Lyth bound by resonant heavy field loops

[CYF, Jiang, Sasaki, Vardanyan, Zhou, PRL 127 (2021) 251301]

- \succ $\delta \chi$ is masseless and controls the curvature perturbation;
- > $\delta \phi$ is massive, resonant, only gravitationally coupled to $\delta \chi$, and controls isocurvature perturbations.

$$egin{aligned} S_3 &\supset rac{1}{2} \int dt rac{d^3 k d^3 p}{(2\pi)^6} a^3 \Bigg(-\sqrt{2\epsilon_\chi} rac{m{k} \cdot m{p}}{k^2} \mathcal{M}_{ ext{eff}}^2 \delta \phi_{m{k}-m{p}} \delta \chi_{-m{k}} \delta \phi_{m{p}} \Bigg) \ &- rac{2}{M_{ ext{pl}}^2} \int dt rac{d^3 k d^3 p}{(2\pi)^6} a^3 \Big(e^\lambda_{ij}(m{k}) rac{p_i p_j}{a^2} \Big) \delta \phi_{m{p}} \delta \phi_{m{k}-m{p}} h^\lambda_{-m{k}} \end{aligned}$$

Condition 1 Resonance must happen inside the Hubble horizon.

- e.g. narrow resonance $\delta \phi \propto \exp((|M_{\text{eff}}|/H)\Delta N)$ $|M_{\text{eff}}| \sim O(10)H$ $\exp(\Delta N) \sim \frac{|M_{\text{eff}}|}{H}$
- **Condition 2** Resonant heavy field must decay outside the Hubble horizon, in order not to affect curvature perturbations.

 $M_{\rm eff} \gtrsim O(1)H$

Condition 3 Resonant field mass needs to become small right after Hubble crossing.

A specific model realization

[CYF, Jiang, Sasaki, Vardanyan, Zhou, PRL 127 (2021) 251301]

determines the slope of ϕ slope of χ vacuum energy curvature perturbation $V(\phi,\chi) = V_0 \left(1 - \sqrt{2\epsilon_{\phi}} \frac{\phi}{M_{\rm Pl}} + \sqrt{2\epsilon_{\chi}} \frac{\chi}{M_{\rm Pl}} + \eta_{\chi} \frac{\chi^2}{2M} \right)$ 0.0000 $+\Lambda^4(\phi)\cos\left(\frac{\phi}{f_2}\right)$ $\phi_{\rm s}/M_{\rm Pl}$ $\phi_{\rm e}/M_{\rm Pl}$ -0.0005-0.0010 $\chi/M_{
m Pl}$ ϕ oscillation Increasing a/a* -0.0015 $V_{\rm m}(q$ -0.0020Super-Hubble decay -0.0005-0.0020-0.0015-0.00100.0000 $\phi/M_{\rm Pl}$

Numerical results & forecast for CMB

[CYF, Jiang, Sasaki, Vardanyan, Zhou, PRL 127 (2021) 251301]

Limits on Scalar-Induced Gravitational Waves by Pulsar Timing Array Observations

[CYF, He, Ma, Yan, Yuan, 2306.17822, Science Bulletin 68 (2023) 2487]

• For universally explored power spectra, we introduce a broken powerlaw parameterization to describe the energy spectrum:

$$\Omega_{\rm GW}(f)h_0^2 = A \frac{\alpha + \beta}{\beta (f/f_c)^{-\alpha} + \alpha (f/f_c)^{\beta}}$$

• Data fitting: the maximum likelihood method

$$-2\ln\mathcal{L}(\Theta) = \sum \left[\frac{(\Omega_{\rm GW}h^2)_i - \Omega_{\rm GW}h^2(f_i;\Theta)}{\sigma_i}\right]^2$$

Limits on Scalar-Induced Gravitational Waves by Pulsar Timing Array Observations

[CYF, He, Ma, Yan, Yuan, 2306.17822, Science Bulletin 68 (2023) 2487]

• Posterior distributions of key parameters (log A, f_c , α) with 1σ and 2σ

Limits on Scalar-Induced Gravitational Waves by Pulsar Timing Array Observations

[CYF, He, Ma, Yan, Yuan, 2306.17822, Science Bulletin 68 (2023) 2487]

• Energy spectra of the stochastic GW background

A brief summary

- Sound speed resonance can enhance power spectrum nonperturbatively, and thus produce PBHs efficiently.
- Abundant underlying physics of SSR needs to explore, namely, model realizations.
- The Lyth bound can be beaten by nonlinear corrections from a resonant heavy field.
- A side story: Limits on Scalar-Induced Gravitational Waves by Pulsar Timing Array Observations

Thanks

Non-Gaussian tails and primordial black holes

[CYF, Ma, Sasaki, Wang, Zhou, PLB 834 (2022) 137461]

Perturbative approach becomes invalid when the tail of curvature perturbation is considered

NG tail is a non-perturbative phenomenon!

 $\succ \beta_{\text{PBH}}$ needs to be calculated very carefully

Non-attractor inflation revisited

[CYF, Chen, Namjoo, Sasaki, Wang, Wang, JCAP 05 (2018) 012]

If y < 1, inflaton would be trapped in the USR phase without perturbation

A sketch of non-perturbative phenomenon in non-attractor inflation

Non-attractor inflation revisited: an upward step

[CYF, Ma, Sasaki, Wang, Zhou, JCAP 12 (2022) 034]

A concrete example:
$$V(\phi) = \begin{cases} V_0 \left[1 + \sqrt{2\epsilon_I} \left(\phi - \phi_c \right) + \frac{1}{2} \eta_I \left(\phi - \phi_c \right)^2 \right] , & \phi \ge \phi_c \\ (V_0 + \Delta V) \left[1 + \sqrt{2\epsilon_{II}} \left(\phi - \phi_c \right) + \frac{1}{2} \eta_{II} \left(\phi - \phi_c \right)^2 \right] , & \phi < \phi_c \end{cases}$$

A sketch of the inflaton potential for the SR-SR transition, where two stages of slow-roll inflation are connected by an upward step.

What happens near the step?

[CYF, Ma, Sasaki, Wang, Zhou, JCAP 12 (2022) 034]

• At the upward step, $\phi = \phi_c$, the energy conservation leads to the relation:

Background dynamics of inflaton is simply depicted by a 2-order ODE piecewise:

$$\frac{\mathrm{d}^2\phi}{\mathrm{d}n^2} + 3\frac{\mathrm{d}\phi}{\mathrm{d}n} + 3\sqrt{2\epsilon} + 3\eta(\phi - \phi_c) = 0$$

Off-attractor behavior in slow-roll phase

For long wavelength modes:

Off-attractor trajectories are converged into slow-roll attractor before reaching the step. The results are agree with slow-roll inflation.

δN formalism

off-attractor trajectories For near-step modes: can not be ignored!! $N_{\text{total}} = N_I + N_{II}$ $\simeq \left[\frac{1}{3}\log\left[\frac{\pi_i}{\pi_i + 3(\phi_i - \phi_c)}\right]\right] + \frac{1}{\eta_{II}}\log\left[-2\eta_{II}\pi_d - 6\sqrt{2\epsilon_{II}}\right] + \text{constant} \; .$ function of initial conditions USR standard result $\mathcal{R} = N(\phi_i + \delta\phi, \pi_i + \delta\pi) - N(\phi_i, \pi_i)$ $\simeq -\frac{1}{3} \log \left[1 + \frac{3\delta\phi}{\pi_c} \right] + \frac{1}{n_H} \log \left[1 + \frac{2\eta_H \delta\pi_d}{6\sqrt{2\epsilon_H} + 2n_H \pi_H} \right]$ $\delta \pi_d = \pi_d \left[\sqrt{1 + rac{6}{g} rac{\delta \phi}{\pi_d}} + 9 \left(rac{\delta \phi}{\pi_d}
ight)^2 - 1
ight]$ key result in our work

[CYF, Ma, Sasaki, Wang, Zhou, JCAP 12 (2022) 034]

Non-perturbative effects come from this step

[CYF, Ma, Sasaki, Wang, Zhou, PLB 834 (2022) 137461]

Assuming $g \ll 1$, curvature perturbation can be approximated as follows,

$$\mathcal{R} \simeq rac{2}{|h|}ig(1-\sqrt{1-|h|\mathcal{R}_G}ig)$$

where we introduced the gaussian part of curvature perturbation:

 ${\cal R}_G \equiv (2\eta_{II}/gh)(\delta\phi/\pi_d)$

 ${\cal R}$ cannot be large than 2/|h|

Once the large R is considered, it's highly non-Gaussian. However, the perturbative non-Gaussianities remain small in all orders when |h| <<1

Non-Gaussian coefficient at order \mathcal{R}_G^{n+1} is $O(|h|^n)$

The prediction of a non-Gaussian tail

[*CYF*, Ma, Sasaki, Wang, Zhou, PLB 834 (2022) 137461] > Probability distribution function (PDF) of curvature perturbation:

 $P[\mathcal{R}]d\mathcal{R} = P[\mathcal{R}_G]d\mathcal{R}_G$

Since R_G is a Gaussian random variable of which the variance σ_R^2 is given by $\int d \log k \ P_{\mathcal{R}_G}(k)$

$$P[\mathcal{R}] = rac{2 - |h|\mathcal{R}}{\Omega} \exp \Big[-rac{\mathcal{R}^2 (4 - |h|\mathcal{R})^2}{32\sigma_\mathcal{R}^2} \Big]$$
, for $\mathcal{R} \leq 2/|h|^2$

where $\boldsymbol{\Omega}$ is a normalization coefficient

The tail of the distribution now becomes highly non-perturbative!

An application of a non-Gaussian tail: PBH formation

[CYF, Ma, Sasaki, Wang, Zhou, JCAP 12 (2022) 034]

 \blacktriangleright Integrate the PDF we got previously, we get the mass fraction:

$$\beta_{\rm PBH}^{\rm NG} = \frac{\sqrt{2\pi\sigma_{\mathcal{R}}^2}}{\Omega} \Big[\operatorname{Erf}(\frac{1}{|h|\sqrt{2\sigma_{\mathcal{R}}^2}}) - \operatorname{Erf}(\frac{\mathcal{R}_c(4-|h|\mathcal{R}_c)}{4\sqrt{2\sigma_{\mathcal{R}}^2}}) \Big] \Theta(\frac{2}{|h|} - \mathcal{R}_c) \ .$$

Here the normalization coefficient is same as before:

$$\Omega \equiv \sqrt{2\pi\sigma_{\mathcal{R}}^2} [1 + \operatorname{Erf}(1/(|h|\sqrt{2\sigma_{\mathcal{R}}^2}))].$$

A non-Gaussian tail can either enhance the PBH formation by almost 6 orders or forbid any PBH formation!

For other rigor methods to get β_{PBH} see: Germani et al PRL 122 (2019) 141302; Figueroa et al PRL 127 (2021) 101302; Pi & Sasaki PRL 131 (2023) 011002;

Summary on NG tails

- The statistics of primordial fluctuations are measured to be highly Gaussian. Yet it is true, very few attentions were paid on the tail of its probability distribution.
- An upward step along the potential can yield a significantly non-perturbative effect on this tail even it is so tiny.
- Phenomenon 1: the perturbative nonlinearity parameters such as f_{NL} , g_{NL} remain small;
- Phenomenon 2: a small fluctuation can affect the background tendency due to off-attractor trajectories;
- Phenomenon 3: A non-Gaussian tail can either easily enhance the PBH mass fraction by several orders of magnitude, or make it absolutely impossible to form PBHs.

Probing new physics via the GW astronomy with SSR

Hidden New Physics in Gravity Theories

A wide class of MG theories can raise non-trivial GWs speed, for instance, in scalar-tensor theories:

$$egin{aligned} \mathcal{L}=&G_2(\phi,X)-G_3(\phi,X)\Box\phi+G_4(\phi,X)R+G_{4X}ig[(\Box\phi)^2-\phi^{\mu
u}\phi_{\mu
u}ig]\ &+G_5(\phi,X)G^{\mu
u}\phi_{\mu
u}-rac{G_{5X}}{6}ig[(\Box\phi)^3-3\Box\phi\phi^{\mu
u}\phi_{\mu
u}+2\phi_{\mu
u}\phi^{
u\lambda}\phi^{\mu}_\lambdaig] \end{aligned}$$

Horndeski, IJTP (1974)

Perturbative expansion:

$$c_g^2 = rac{G_4 - X \Big(\ddot{\phi} G_{5X} + G_{5\phi} \Big)}{G_4 - 2 X G_{4X} - X \Big(H \dot{\phi} G_{5X} - G_{5\phi} \Big)} \ \simeq 1 - rac{\phi^2}{M^2} + \ldots$$

Hidden New Physics in Gravity Theories

Another class of MG theory can raise non-trivial GWs speed, namely, when we consider 4-D Einstein-Gauss-Bonnet gravity:

$$\ddot{\gamma}_{ij} + 3H igg(1 - rac{8lpha\epsilon H^2}{3M_{
m P}^2\Gamma} igg) \dot{\gamma}_{ij} - c_{
m s}^2 rac{\partial^2 \gamma_{ij}}{a^2} = 0 ~~~ c_{
m s}^2 \equiv 1 - rac{8lpha\epsilon H^2}{M_{
m P}^2\Gamma}$$

Oscillatory Sound Speed

A wide class of MG theories can lead to the non-trivial GWs speed, in particular, oscillation of scalar at reheating triggers on an oscillating sound speed of tensor modes.

$$h_k''(au)+2\mathcal{H}h_k'(au)+c_g^2k^2h_k(au)=0$$

$$c_g^2 = 1 - rac{lpha}{\left(1 + au/ au_0
ight)^2} \mathrm{cos}^2(k_* au)$$

In the very late universe,

 $c_g^2=1$

Parametric Resonance

For a general picture of GWs:

$$h_k''(au)+2\mathcal{H}h_k'(au)+c_g^2k^2h_k(au)=0$$

For sub-Hubble modes

$$k \gg a'/a$$

Friction term can be omitted

$$rac{\partial^2 h_k}{\partial x^2} + [A-2q\cos(2x)]h_k = 0$$

$$x = k_* au \quad A = rac{k^2}{k_*^2} - 2q \quad \ \ q = rac{lpha k^2}{4k_*^2 ig(1+rac{x}{x_0}ig)^2}$$

Parametric Resonance

Demo: EoM without Hubble friction term

Significant Features

